ECCE @ EIC Software
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
G4StatMFParameters.cc
Go to the documentation of this file. Or view the newest version in sPHENIX GitHub for file G4StatMFParameters.cc
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 //
27 //
28 // Hadronic Process: Nuclear De-excitations
29 // by V. Lara
30 
31 
32 #include "G4StatMFParameters.hh"
33 #include "G4SystemOfUnits.hh"
34 #include "G4PhysicalConstants.hh"
35 
36 const G4double G4StatMFParameters::fKappa = 1.0; // dimensionless
37 
38 const G4double G4StatMFParameters::fKappaCoulomb = 2.0; // dimensionless
39 
41 
42 // Bethe-Weizsacker coefficients
44 
46 
48 
49 // Critical temperature (for liquid-gas phase transitions)
51 
52 // Nuclear radius
54 
56  (1.0 - 1.0/std::pow(1.0+fKappaCoulomb,1./3.));
57 
59 {}
60 
62 {}
63 
65 {
66  return fKappa;
67 }
68 
70 {
71  return fKappaCoulomb;
72 }
73 
75 {
76  return fEpsilon0;
77 }
78 
80 {
81  return fE0;
82 }
83 
85 {
86  return fBeta0;
87 }
88 
90 {
91  return fGamma0;
92 }
93 
95 {
96  return fCriticalTemp;
97 }
98 
100 {
101  return fr0;
102 }
103 
105 {
106  return fCoulomb;
107 }
108 
110 {
111  G4double res = 0.0;
112  if (T < fCriticalTemp) {
113  G4double CriticalTempSqr = fCriticalTemp*fCriticalTemp;
114  G4double TempSqr = T*T;
115  G4double tmp = (CriticalTempSqr-TempSqr)/(CriticalTempSqr+TempSqr);
116 
117  res = fBeta0*tmp*std::pow(tmp,0.25);
118  }
119  return res;
120 }
121 
123 {
124  G4double res = 0.0;
125  if (T < fCriticalTemp) {
126  G4double CriticalTempSqr = fCriticalTemp*fCriticalTemp;
127  G4double TempSqr = T*T;
128  G4double tmp = (CriticalTempSqr-TempSqr)/(CriticalTempSqr+TempSqr);
129 
130  res = -5.0*fBeta0*std::pow(tmp,0.25)*(CriticalTempSqr*T)/
131  ((CriticalTempSqr+TempSqr)*(CriticalTempSqr+TempSqr));
132  }
133  return res;
134 }
135 
136 G4double
138 {
139  // Maximun average multiplicity: M_0 = 2.6 for A ~ 200
140  // and M_0 = 3.3 for A <= 110
141  G4double MaxAverageMultiplicity = 2.6;
142  if (A <= 110) { MaxAverageMultiplicity = 3.3; }
143  return MaxAverageMultiplicity;
144 }
145