ECCE @ EIC Software
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
G4FermiPhaseSpaceDecay.cc
Go to the documentation of this file. Or view the newest version in sPHENIX GitHub for file G4FermiPhaseSpaceDecay.cc
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 //
27 // Hadronic Process: Phase space decay for the Fermi BreakUp model
28 // by V. Lara
29 //
30 // Modifications:
31 // 01.04.2011 General cleanup by V.Ivanchenko:
32 // - IsotropicVector is inlined
33 // - Momentum computation return zero or positive value
34 // - DumpProblem method is added providing more information
35 // - Reduced usage of exotic std functions
36 
38 
39 #include "G4RandomDirection.hh"
40 #include "G4Pow.hh"
41 
45 
47 {
49 }
50 
52 {}
53 
54 std::vector<G4LorentzVector*>* G4FermiPhaseSpaceDecay::Decay(G4double M,
55  const std::vector<G4double>& mr) const
56  // Calculates momentum for N fragments (Kopylov's method of sampling is used)
57 {
58  size_t N = mr.size();
59 
60  std::vector<G4LorentzVector*>* P =
61  new std::vector<G4LorentzVector*>(N, nullptr);
62 
63  G4double mtot = 0.0;
64  for(size_t k=0; k<N; ++k) { mtot += mr[k]; }
65 
66  G4double mu = mtot;
67  G4double PFragMagCM = 0.0;
68 
69  // Primary mass is above the sum of mass of components
70  G4double Mass = std::max(M, mtot + CLHEP::eV);
71  G4double T = Mass-mtot;
72 
73  G4LorentzVector PFragCM(0.0,0.0,0.0,0.0);
74  G4LorentzVector PRestCM(0.0,0.0,0.0,0.0);
75  G4LorentzVector PRestLab(0.0,0.0,0.0,Mass);
76 
77  CLHEP::HepRandomEngine* rndmEngine = G4Random::getTheEngine();
78 
79  for (size_t k = N-1; k>0; --k)
80  {
81  mu -= mr[k];
82  if (k>1) { T *= BetaKopylov(k, rndmEngine); }
83  else { T = 0.0; }
84 
85  G4double RestMass = mu + T;
86 
87  PFragMagCM = PtwoBody(Mass,mr[k],RestMass);
88 
89  // Create a unit vector with a random direction isotropically distributed
90  G4ThreeVector RandVector = PFragMagCM*G4RandomDirection();
91 
92  PFragCM.setVect(RandVector);
93  PFragCM.setE(std::sqrt(PFragMagCM*PFragMagCM + mr[k]*mr[k]));
94 
95  PRestCM.setVect(-RandVector);
96  PRestCM.setE(std::sqrt(PFragMagCM*PFragMagCM + RestMass*RestMass));
97 
98  G4ThreeVector BoostV = PRestLab.boostVector();
99 
100  PFragCM.boost(BoostV);
101  (*P)[k] = new G4LorentzVector(PFragCM);
102 
103  PRestCM.boost(BoostV);
104  PRestLab = PRestCM;
105 
106  Mass = RestMass;
107  }
108 
109  (*P)[0] = new G4LorentzVector(PRestLab);
110 
111  return P;
112 }
113 
115  CLHEP::HepRandomEngine* rndmEngine) const
116 {
117  G4int N = 3*K - 5;
118  G4double xN = (G4double)N;
119  G4double xN1= (G4double)(N + 1);
120  G4double F;
121  // VI variant
122  G4double Fmax = std::sqrt(g4calc->powN(xN/xN1,N)/xN1);
123  G4double chi;
124  do {
125  chi = rndmEngine->flat();
126  F = std::sqrt(g4calc->powN(chi,N)*(1-chi));
127  // Loop checking, 05-Aug-2015, Vladimir Ivanchenko
128  } while ( Fmax*rndmEngine->flat() > F);
129  return chi;
130 }