ECCE @ EIC Software
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
G4INCLPhaseSpaceGenerator.cc
Go to the documentation of this file. Or view the newest version in sPHENIX GitHub for file G4INCLPhaseSpaceGenerator.cc
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // INCL++ intra-nuclear cascade model
27 // Alain Boudard, CEA-Saclay, France
28 // Joseph Cugnon, University of Liege, Belgium
29 // Jean-Christophe David, CEA-Saclay, France
30 // Pekka Kaitaniemi, CEA-Saclay, France, and Helsinki Institute of Physics, Finland
31 // Sylvie Leray, CEA-Saclay, France
32 // Davide Mancusi, CEA-Saclay, France
33 //
34 #define INCLXX_IN_GEANT4_MODE 1
35 
36 #include "globals.hh"
37 
41 
42 namespace G4INCL {
43 
44  namespace {
45  G4ThreadLocal IPhaseSpaceGenerator *thePhaseSpaceGenerator;
46 
47  G4ThreadLocal Particle *biasMe;
48 
55  void bias(ParticleList &particles, const ThreeVector &pInVec, const G4double slope) {
56  const G4double pIn = pInVec.mag();
57  const ThreeVector collisionAxis = pInVec/pIn;
58  const ThreeVector pMomVec = biasMe->getMomentum();
59  const G4double pMom = pMomVec.mag();
60  if(pMom ==0.) return;
61  const G4double pMomCosAng = pMomVec.dot(collisionAxis)/pMom;
62  const G4double pMomAng = Math::arcCos(pMomCosAng); // Angle between the original axis of the dominant particle and is new one after generate
63 
64  // compute the target angle for the biasing
65  // it is drawn from a exp(Bt) distribution
66  const G4double cosAngSlope = 2e-6 * slope * pIn * pMom;
67  const G4double cosAng = 1. + std::log(1. - Random::shoot()*(1.-std::exp(-2.*cosAngSlope)))/cosAngSlope;
68  const G4double ang = Math::arcCos(cosAng);
69 
70  // compute the rotation angle
71  const G4double rotationAngle = ang - pMomAng;
72 
73  // generate the rotation axis; it is perpendicular to collisionAxis and
74  // pMomVec
75  ThreeVector rotationAxis;
76  if(pMomAng>1E-10) {
77  rotationAxis = collisionAxis.vector(pMomVec);
78  const G4double axisLength = rotationAxis.mag();
79  const G4double oneOverLength = 1./axisLength;
80  rotationAxis *= oneOverLength;
81  } else {
82  // need to jump through some hoops if collisionAxis is nearly aligned
83  // with pMomVec
84  rotationAxis = collisionAxis.anyOrthogonal();
85  }
86 
87  // apply the rotation
88  particles.rotateMomentum(rotationAngle, rotationAxis);
89  }
90 
91  }
92 
93  namespace PhaseSpaceGenerator {
94  void generate(const G4double sqrtS, ParticleList &particles) {
95  return thePhaseSpaceGenerator->generate(sqrtS, particles);
96  }
97 
98  void generateBiased(const G4double sqrtS, ParticleList &particles, const size_t index, const G4double slope) {
99 // assert(index<particles.size());
100  // store the incoming momentum of particle[index]; it will be used to
101  // compute t when biasing
102  biasMe = particles[index];
103  const ThreeVector pInVec = biasMe->getMomentum();
104  generate(sqrtS, particles);
105  // Extremely rare event try to bias with vector null
106  if(pInVec.mag() != 0.) bias(particles, pInVec, slope);
107  }
108 
110  thePhaseSpaceGenerator = g;
111  }
112 
114  return thePhaseSpaceGenerator;
115  }
116 
118  delete thePhaseSpaceGenerator;
119  thePhaseSpaceGenerator = NULL;
120  }
121 
122  void initialize(Config const * const theConfig) {
124  if(psg==RauboldLynchType)
126  else if(psg==KopylovType)
128  else
130  }
131  }
132 }