ECCE @ EIC Software
Reference for
ECCE @ EIC
simulation and reconstruction software on GitHub
Home page
Related Pages
Modules
Namespaces
Classes
Files
External Links
File List
File Members
All
Classes
Namespaces
Files
Functions
Variables
Typedefs
Enumerations
Enumerator
Friends
Macros
Groups
Pages
G4EvaporationChannel.cc
Go to the documentation of this file.
Or view
the newest version in sPHENIX GitHub for file G4EvaporationChannel.cc
1
//
2
// ********************************************************************
3
// * License and Disclaimer *
4
// * *
5
// * The Geant4 software is copyright of the Copyright Holders of *
6
// * the Geant4 Collaboration. It is provided under the terms and *
7
// * conditions of the Geant4 Software License, included in the file *
8
// * LICENSE and available at http://cern.ch/geant4/license . These *
9
// * include a list of copyright holders. *
10
// * *
11
// * Neither the authors of this software system, nor their employing *
12
// * institutes,nor the agencies providing financial support for this *
13
// * work make any representation or warranty, express or implied, *
14
// * regarding this software system or assume any liability for its *
15
// * use. Please see the license in the file LICENSE and URL above *
16
// * for the full disclaimer and the limitation of liability. *
17
// * *
18
// * This code implementation is the result of the scientific and *
19
// * technical work of the GEANT4 collaboration. *
20
// * By using, copying, modifying or distributing the software (or *
21
// * any work based on the software) you agree to acknowledge its *
22
// * use in resulting scientific publications, and indicate your *
23
// * acceptance of all terms of the Geant4 Software license. *
24
// ********************************************************************
25
//
26
//J.M. Quesada (August2008). Based on:
27
//
28
// Hadronic Process: Nuclear De-excitations
29
// by V. Lara (Oct 1998)
30
//
31
// Modified:
32
// 03-09-2008 J.M. Quesada for external choice of inverse cross section option
33
// 06-09-2008 J.M. Quesada Also external choices have been added for superimposed
34
// Coulomb barrier (if useSICB is set true, by default is false)
35
// 17-11-2010 V.Ivanchenko in constructor replace G4VEmissionProbability by
36
// G4EvaporationProbability and do not new and delete probability
37
// object at each call; use G4Pow
38
39
#include "
G4EvaporationChannel.hh
"
40
#include "
G4EvaporationProbability.hh
"
41
#include "
G4CoulombBarrier.hh
"
42
#include "
G4NuclearLevelData.hh
"
43
#include "
G4NucleiProperties.hh
"
44
#include "
G4Pow.hh
"
45
#include "
G4Log.hh
"
46
#include "
G4Exp.hh
"
47
#include "
G4PhysicalConstants.hh
"
48
#include "
G4SystemOfUnits.hh
"
49
#include "
Randomize.hh
"
50
#include "
G4RandomDirection.hh
"
51
#include "
G4Alpha.hh
"
52
53
G4EvaporationChannel::G4EvaporationChannel
(
G4int
anA,
G4int
aZ,
54
G4EvaporationProbability
* aprob):
55
G4VEvaporationChannel
(),
56
theA(anA),
57
theZ(aZ),
58
theProbability(aprob),
59
theCoulombBarrier(new
G4CoulombBarrier
(anA, aZ))
60
{
61
resA
=
resZ
= 0;
62
mass
=
resMass
= 0.0;
63
evapMass
=
G4NucleiProperties::GetNuclearMass
(
theA
,
theZ
);
64
//G4cout << "G4EvaporationChannel: Z= " << theZ << " A= " << theA
65
// << " M(GeV)= " << evapMass/GeV << G4endl;
66
evapMass2
=
evapMass
*
evapMass
;
67
theLevelData
=
G4NuclearLevelData::GetInstance
();
68
}
69
70
G4EvaporationChannel::~G4EvaporationChannel
()
71
{
72
delete
theCoulombBarrier
;
73
}
74
75
void
G4EvaporationChannel::Initialise
()
76
{
77
theProbability
->
Initialise
();
78
G4VEvaporationChannel::Initialise
();
79
}
80
81
G4double
G4EvaporationChannel::GetEmissionProbability
(
G4Fragment
* fragment)
82
{
83
theProbability
->
ResetProbability
();
84
G4int
fragA = fragment->
GetA_asInt
();
85
G4int
fragZ = fragment->
GetZ_asInt
();
86
resA
= fragA -
theA
;
87
resZ
= fragZ -
theZ
;
88
89
// Only channels which are physically allowed are taken into account
90
if
(
resA
< theA ||
resA
<
resZ
||
resZ
< 0 || (
resA
== theA &&
resZ
< theZ)
91
|| ((
resA
> 1) && (
resA
==
resZ
||
resZ
== 0)))
92
{
return
0.0; }
93
94
G4double
exEnergy = fragment->
GetExcitationEnergy
();
95
G4double
delta0 =
theLevelData
->
GetPairingCorrection
(fragZ,fragA);
96
/*
97
G4cout << "G4EvaporationChannel::Initialize Z= "<<theZ<<" A= "<<theA
98
<< " FragZ= " << fragZ << " FragA= " << fragA
99
<< " exEnergy= " << exEnergy << " d0= " << delta0 << G4endl;
100
*/
101
if
(exEnergy < delta0) {
return
0.0; }
102
103
G4double
fragMass = fragment->
GetGroundStateMass
();
104
mass
= fragMass + exEnergy;
105
106
resMass
=
G4NucleiProperties::GetNuclearMass
(
resA
,
resZ
);
107
G4double
bCoulomb = 0.0;
108
G4double
elim = 0.0;
109
if
(theZ > 0) {
110
bCoulomb =
theCoulombBarrier
->
GetCoulombBarrier
(
resA
,
resZ
,exEnergy);
111
112
// for OPTxs >0 penetration under the barrier is taken into account
113
const
G4double
dCB = 3.5*
CLHEP::MeV
;
114
elim = (0 !=
OPTxs
) ?
115
std::max
(bCoulomb*0.5, bCoulomb - dCB*theZ) : bCoulomb;
116
}
117
/*
118
G4cout << "exEnergy= " << exEnergy << " Ec= " << bCoulomb
119
<< " d0= " << delta0
120
<< " Free= " << mass - resMass - evapMass
121
<< G4endl;
122
*/
123
if
(
mass
<=
resMass
+
evapMass
+ elim) {
return
0.0; }
124
125
G4double
twoMass =
mass
+
mass
;
126
G4double
ekinmax =
127
((mass-
resMass
)*(mass+
resMass
) +
evapMass2
)/twoMass -
evapMass
;
128
G4double
ekinmin
= 0.0;
129
if
(elim > 0.0) {
130
G4double
resM =
std::max
(mass -
evapMass
- elim,
resMass
);
131
ekinmin =
132
std::max
(((mass-resM)*(mass+resM) +
evapMass2
)/twoMass -
evapMass
,0.0);
133
}
134
/*
135
G4cout << "Emin= " <<ekinmin<<" Emax= "<<ekinmax
136
<< " mass= " << mass << " resM= " << resMass
137
<< " evapM= " << evapMass << G4endl;
138
*/
139
if
(ekinmax <= ekinmin) {
return
0.0; }
140
141
theProbability
->
SetDecayKinematics
(
resZ
,
resA
,
resMass
, mass);
142
G4double
prob =
theProbability
->
TotalProbability
(*fragment, ekinmin,
143
ekinmax, bCoulomb,
144
exEnergy - delta0);
145
/*
146
G4cout<<"G4EvaporationChannel: prob= "<< prob << " Z= " << theZ
147
<< " A= " << theA << " E1= " << ekinmin << " E2= " << ekinmax
148
<< G4endl;
149
*/
150
return
prob;
151
}
152
153
G4Fragment
*
G4EvaporationChannel::EmittedFragment
(
G4Fragment
* theNucleus)
154
{
155
G4double
ekin;
156
// assumed, that TotalProbability(...) was already called
157
// if value iz zero no possiblity to sample final state
158
if
(resA <= 4 || theProbability->GetProbability() == 0.0) {
159
ekin = 0.5*(
mass
*
mass
-
resMass
*
resMass
+
evapMass2
)/
mass
-
evapMass
;
160
}
else
{
161
ekin =
theProbability
->
SampleEnergy
();
162
}
163
ekin =
std::max
(ekin, 0.0);
164
G4LorentzVector
lv0 = theNucleus->
GetMomentum
();
165
G4LorentzVector
lv(std::sqrt(ekin*(ekin + 2.0*
evapMass
))*
G4RandomDirection
(),
166
ekin +
evapMass
);
167
lv.
boost
(lv0.
boostVector
());
168
169
G4Fragment
* evFragment =
new
G4Fragment
(
theA
,
theZ
, lv);
170
lv0 -= lv;
171
theNucleus->
SetZandA_asInt
(
resZ
,
resA
);
172
theNucleus->
SetMomentum
(lv0);
173
174
//G4cout << "Residual: Z= " << resZ << " A= " << resA << " Eex= "
175
// << theNucleus->GetExcitationEnergy() << G4endl;
176
return
evFragment;
177
}
geant4
tree
geant4-10.6-release
source
processes
hadronic
models
de_excitation
evaporation
src
G4EvaporationChannel.cc
Built by
Jin Huang
. updated:
Wed Jun 29 2022 17:25:41
using
1.8.2 with
ECCE GitHub integration