ECCE @ EIC Software
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
G4GaussLegendreQ.hh
Go to the documentation of this file. Or view the newest version in sPHENIX GitHub for file G4GaussLegendreQ.hh
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 //
27 //
28 // Class description:
29 //
30 // Class for Gauss-Legendre integration method
31 // Roots of ortogonal polynoms and corresponding weights are calculated based on
32 // iteration method (by bisection Newton algorithm). Constant values for initial
33 // approximations were derived from the book: M. Abramowitz, I. Stegun, Handbook
34 // of mathematical functions, DOVER Publications INC, New York 1965 ; chapters 9,
35 // 10, and 22 .
36 //
37 // ------------------------- CONSTRUCTORS: -------------------------------
38 //
39 // Constructor for GaussLegendre quadrature method. The value nLegendre set the
40 // accuracy required, i.e the number of points where the function pFunction will
41 // be evaluated during integration. The constructor creates the arrays for
42 // abscissas and weights that used in Gauss-Legendre quadrature method.
43 // The values a and b are the limits of integration of the pFunction.
44 //
45 // G4GaussLegendreQ( function pFunction,
46 // G4int nLegendre )
47 //
48 // -------------------------- METHODS: ---------------------------------------
49 //
50 // Returns the integral of the function to be pointed by fFunction between a and b,
51 // by 2*fNumber point Gauss-Legendre integration: the function is evaluated exactly
52 // 2*fNumber Times at interior points in the range of integration. Since the weights
53 // and abscissas are, in this case, symmetric around the midpoint of the range of
54 // integration, there are actually only fNumber distinct values of each.
55 //
56 // G4double Integral(G4double a, G4double b) const
57 //
58 // -----------------------------------------------------------------------
59 //
60 // Returns the integral of the function to be pointed by fFunction between a and b,
61 // by ten point Gauss-Legendre integration: the function is evaluated exactly
62 // ten Times at interior points in the range of integration. Since the weights
63 // and abscissas are, in this case, symmetric around the midpoint of the range of
64 // integration, there are actually only five distinct values of each
65 //
66 // G4double
67 // QuickIntegral(G4double a, G4double b) const
68 //
69 // ---------------------------------------------------------------------
70 //
71 // Returns the integral of the function to be pointed by fFunction between a and b,
72 // by 96 point Gauss-Legendre integration: the function is evaluated exactly
73 // ten Times at interior points in the range of integration. Since the weights
74 // and abscissas are, in this case, symmetric around the midpoint of the range of
75 // integration, there are actually only five distinct values of each
76 //
77 // G4double
78 // AccurateIntegral(G4double a, G4double b) const
79 
80 // ------------------------------- HISTORY --------------------------------
81 //
82 // 13.05.97 V.Grichine (Vladimir.Grichine@cern.chz0
83 
84 #ifndef G4GAUSSLEGENDREQ_HH
85 #define G4GAUSSLEGENDREQ_HH
86 
87 #include "G4VGaussianQuadrature.hh"
88 
90 {
91 public:
92  explicit G4GaussLegendreQ( function pFunction ) ;
93 
94 
95  G4GaussLegendreQ( function pFunction,
96  G4int nLegendre ) ;
97 
98  // Methods
99 
101 
103 
105 
106 private:
107 
110 };
111 
112 #endif