ECCE @ EIC Software
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
ExGflashHomoShowerTuning.hh
Go to the documentation of this file. Or view the newest version in sPHENIX GitHub for file ExGflashHomoShowerTuning.hh
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 //
29 //
30 // ---------------------------------------------------------------
31 // GEANT 4 class header file
32 //
33 // ExGflashHomoShowerTuning
34 //
35 // Class description:
36 //
37 // Tuning class for GFlash homogeneous shower parameterisation.
38 // Definitions:
39 // <t>: shower center of gravity
40 // T: Depth at shower maximum
41 // Ec: Critical energy
42 // X0: Radiation length
43 // y = E/Ec
44 //
45 // Homogeneous media:
46 // Average shower profile
47 // (1/E)(dE(t)/dt) = f(t)
48 // = (beta*t)**(alpha-1)*beta*std::exp(-beta*t)/Gamma(alpha)
49 // where Gamma is the Gamma function
50 //
51 // <t> = alpha/beta
52 // T = (alpha-1)/beta
53 // and
54 // T = ln(y) + t1
55 // alpha = a1+(a2+a3/Z)ln(y)
56 
57 // Author: J.P. Wellisch - October 2004
58 //---------------------------------------------------------------
59 
60 #ifndef ExGflashHomoShowerTuning_hh
61 #define ExGflashHomoShowerTuning_hh
62 
64 
66 {
67  public:
70 
71  public: // with description
72 
73  G4double ParAveT1(){ return -0.812;} // t1
74  G4double ParAveA1(){ return 0.81; } // a1
75  G4double ParAveA2(){ return 0.458; } // a2
76  G4double ParAveA3(){ return 2.26; } // a3
77 
78  G4double ParSigLogT1(){ return -1.4;} // t1
79  G4double ParSigLogT2(){ return 1.26;} // t2
80  // std::sqrt(var(ln(T))) = 1/(t+t2*ln(y))
81 
82  G4double ParSigLogA1(){ return -0.58;} // a1
83  G4double ParSigLogA2(){ return 0.86; } // a2
84  // std::sqrt(var(ln(alpha))) = 1/(a1+a2*ln(y))
85 
86  G4double ParRho1(){ return 0.705; } // r1
87  G4double ParRho2(){ return -0.023;} // r2
88  // Correlation(ln(T),ln(alpha))=r1+r2*ln(y)
89 
90  // Radial profiles
91  // f(r) := (1/dE(t))(dE(t,r)/dr)
92  // Ansatz:
93  // f(r) = p(2*r*Rc**2)/(r**2+Rc**2)**2+(1-p)*(2*r*Rt**2)/(r**2+Rt**2)**2,
94  // 0<p<1
95 
96  G4double ParRC1(){ return 0.0251; } // c1
97  G4double ParRC2(){ return 0.00319; } // c2
98  G4double ParRC3(){ return 0.1162; } // c3
99  G4double ParRC4(){ return -0.000381;} // c4
100  // Rc (t/T)= z1 +z2*t/T
101  // z1 = c1+c2*ln(E/GeV)
102  // z2 = c3+c4*Z
103 
104  G4double ParRT1(){ return 0.659; } // t1
105  G4double ParRT2(){ return -0.00309;} // t2
106  G4double ParRT3(){ return 0.645; } // k2
107  G4double ParRT4(){ return -2.59; } // k3
108  G4double ParRT5(){ return 0.3585; } // t5
109  G4double ParRT6(){ return 0.0412; } // t6
110  // Rt (t/T)= k1*(std::exp(k3*(t/T-k2))+std::exp(k4*(t/T-k2)))
111  // k1 = t1+t2*Z
112  // k4 = t5+t6*ln(E/GeV)
113 
114  G4double ParWC1(){ return 2.632; } // c1
115  G4double ParWC2(){ return -0.00094;} // c2
116  G4double ParWC3(){ return 0.401; } // c3
117  G4double ParWC4(){ return 0.00187; } // c4
118  G4double ParWC5(){ return 1.313; } // c5
119  G4double ParWC6(){ return -0.0686; } // c6
120  // p(t/T) = p1*std::exp((p2-t/T)/p3 - std::exp((p2-t/T)/p3))
121  // p1 = c1+c2*Z
122  // p2 = c3+c4*Z
123  // p3 = c5 + c6*ln(E/GeV)
124 
125  G4double ParSpotN1(){ return 93.; } // n1
126  G4double ParSpotN2(){ return 0.876;} // n2
127  // Fluctuations on radial profiles through number of spots
128  // The total number of spots needed for a shower is
129  // Ns = n1*ln(Z)(E/GeV)**n2
130 
131  // The number of spots per longitudinal interval is:
132  // (1/Ns)(dNs(t)/dt) = f(t)
133  // = (beta*t)**(alpha-1)*beta*std::exp(-beta*t)/Gamma(alpha)
134  // <t> = alpha_s/beta_s
135  // Ts = (alpha_s-1)/beta_s
136  // and
137  // Ts = T*(t1+t2*Z)
138  // alpha_s = alpha*(a1+a2*Z)
139 
140  G4double ParSpotT1(){ return 0.698; } // t1
141  G4double ParSpotT2(){ return 0.00212;} // t2
142 
143  G4double ParSpotA1(){ return 0.639; } //a1
144  G4double ParSpotA2(){ return 0.00334;} //a2
145 
146 };
147 
148 #endif