ECCE @ EIC Software
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
G4XAnnihilationChannel.cc
Go to the documentation of this file. Or view the newest version in sPHENIX GitHub for file G4XAnnihilationChannel.cc
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 #include "globals.hh"
27 #include "G4ios.hh"
28 #include "G4PhysicalConstants.hh"
30 #include "G4KineticTrack.hh"
31 #include "G4ParticleDefinition.hh"
32 #include "G4ResonanceWidth.hh"
34 #include "G4PhysicsVector.hh"
35 #include "G4PartialWidthTable.hh"
36 
38 {
39  // As a first approximation the model is assumed to be valid over
40  // the entire energy range
41  lowLimit = 0.;
43  widthTable = 0;
44  partWidthTable = 0;
45 }
46 
48  const G4ResonanceWidth& resWidths,
49  const G4ResonancePartialWidth& resPartWidths,
50  const G4String& partWidthLabel)
51  : resonance(resDefinition)
52 {
53  // Get the tabulated mass-dependent widths for the resonance
54  G4String resName = resonance->GetParticleName();
55  // cout << "HPW "<<resName<<endl;
56  G4String shortName = theNames.ShortName(resName);
57  // cout << "HPW "<<shortName<<endl;
58  // cout << "HPW "<<partWidthLabel<<endl;
59 
60  widthTable = resWidths.MassDependentWidth(shortName);
61  partWidthTable = resPartWidths.MassDependentWidth(partWidthLabel);
62 
63  // As a first approximation the model is assumed to be valid over
64  // the entire energy range
65  lowLimit = 0.;
67 }
68 
69 
71 {
72  if (widthTable) delete widthTable;
73  widthTable = 0;
74  if (partWidthTable) delete partWidthTable;
75  partWidthTable = 0;
76  }
77 
78 
80 {
81  return (this == (G4XAnnihilationChannel *) &right);
82 }
83 
84 
86 {
87  return (this != (G4XAnnihilationChannel *) &right);
88 }
89 
90 
92  const G4KineticTrack& trk2) const
93 {
94  G4double sigma = 0.;
95  G4double eCM = (trk1.Get4Momentum() + trk2.Get4Momentum()).mag();
96 
97  const G4ParticleDefinition* def1 = trk1.GetDefinition();
98  const G4ParticleDefinition* def2 = trk2.GetDefinition();
99 
100  G4int J1 = def1->GetPDGiSpin();
101  G4int J2 = def2->GetPDGiSpin();
102  G4double m_1 = def1->GetPDGMass();
103  G4double m_2 = def2->GetPDGMass();
104 
105  G4int JRes = resonance->GetPDGiSpin();
106  G4double mRes = resonance->GetPDGMass();
107 
108  G4double branch = Branch(trk1,trk2);
109  G4double width = VariableWidth(trk1,trk2);
110  G4double cleb = NormalizedClebsch(trk1,trk2);
111 
112  G4double S = eCM * eCM;
113  if (S == 0.) throw G4HadronicException(__FILE__, __LINE__, "G4XAnnihilationChannel::CrossSection - eCM = 0");
114 
115  G4double pCM = std::sqrt((S-(m_1+m_2)*(m_1+m_2))*(S-(m_1-m_2)*(m_1-m_2))/(4.*S));
116 
117  sigma = ( (JRes + 1.) / ( (J1 + 1) * (J2 + 1) )
118  * pi / (pCM * pCM) * branch * width * width /
119  ( (eCM - mRes) * (eCM - mRes) + width * width / 4.0) * cleb * hbarc_squared);
120 
121 // G4cout << "SS " << branch<<" "<<sigma<<" "
122 // << J1 <<" "
123 // <<J2<<" "
124 // <<m1<<" "
125 // <<m2<<" "
126 // <<JRes<<" "
127 // <<mRes<<" "
128 // <<wRes<<" "
129 // <<width<<" "
130 // <<cleb<<" "
131 // <<G4endl;
132  return sigma;
133 }
134 
135 
137 {
138  G4String name("XAnnihilationChannelCrossSection");
139  return name;
140 }
141 
142 
143 
145 {
146  G4bool answer = InLimits(e,lowLimit,highLimit);
147 
148  return answer;
149 }
150 
151 
153  const G4KineticTrack& trk2) const
154 {
155  G4double w=VariableWidth(trk1,trk2);
156  if(w==0) return 0;
157  return VariablePartialWidth(trk1,trk2) / VariableWidth(trk1,trk2);
158 }
159 
161  const G4KineticTrack& trk2) const
162 {
163  // actual production width of resonance, depending on available energy.
164 
166  G4bool dummy = false;
167  G4double sqrtS = (trk1.Get4Momentum() + trk2.Get4Momentum()).mag();
168  if (widthTable != 0)
169  {
170  width = widthTable->GetValue(sqrtS,dummy);
171  }
172  return width;
173 }
174 
175 
177  const G4KineticTrack& trk2) const
178 {
179  // Calculate mass dependent partial width of resonance,
180  // based on UrQMD tabulations
181 
182  G4double width(0);
183 
184  if (partWidthTable != 0)
185  {
186  G4double sqrtS = 0;
187  G4bool dummy = false;
188  sqrtS = (trk1.Get4Momentum() + trk2.Get4Momentum()).mag();
189  width = partWidthTable->GetValue(sqrtS,dummy);
190  }
191  else
192  {
193  width = resonance->GetPDGWidth();
194  }
195  return width;
196 }
197 
198 
200  const G4KineticTrack& trk2) const
201 {
202  G4double cleb = 0.;
203  const G4ParticleDefinition* def1 = trk1.GetDefinition();
204  const G4ParticleDefinition* def2 = trk2.GetDefinition();
205 
206  G4int iso31 = def1->GetPDGiIsospin3();
207  G4int iso32 = def2->GetPDGiIsospin3();
208  G4int iso3 = iso31 + iso32;
209  G4int iso1 = def1->GetPDGiIsospin();
210  G4int iso2 = def2->GetPDGiIsospin();
211 
212  G4int isoRes = resonance->GetPDGiIsospin();
213 
214  if (isoRes < iso3) return 0.;
215  if ((iso1*iso2) == 0) return 1.;
216 
217  cleb = clebsch.NormalizedClebschGordan(isoRes,iso3,iso1,iso2,iso31,iso32);
218 
219  // Special case: particle-antiparticle, charge-conjugated states have the same weight
220  G4String type1 = def1->GetParticleType();
221  G4String type2 = def2->GetParticleType();
222  G4int anti = def1->GetPDGEncoding() * def2->GetPDGEncoding();
224  if ( ((type1 == "baryon" && type2 == "baryon") ||(type1 == "meson" && type2 == "meson")) &&
225  anti < 0 && strangeness == 0)
226  {
227  if (def1->GetPDGEncoding() != -(def2->GetPDGEncoding())) cleb = 0.5 * cleb;
228  }
229 
230  return cleb;
231 }
232 
233 
234 
235 
236