49 char *path = std::getenv(
"G4LEDATA");
52 G4Exception(
"G4ecpssrLCrossSection::G4ecpssrBaseLixsModel()",
"em0006",
FatalException ,
"G4LEDATA environment variable not set");
55 std::ostringstream fileName1;
56 std::ostringstream fileName2;
58 fileName1 << path <<
"/pixe/uf/FL1.dat";
59 fileName2 << path <<
"/pixe/uf/FL2.dat";
63 std::ifstream FL1(fileName1.str().c_str());
64 if (!FL1)
G4Exception(
"G4ecpssrLCrossSection::G4ecpssrBaseLixsModel()",
"em0003",
FatalException,
"error opening FL1 data file");
89 std::ifstream FL2(fileName2.str().c_str());
90 if (!FL2)
G4Exception(
"G4ecpssrLCrossSection::G4ecpssrBaseLixsModel()",
"em0003",
FatalException,
" error opening FL2 data file");
138 static const G4double euler= 0.5772156649;
139 static const G4int maxit= 100;
140 static const G4double fpmin = 1.0e-30;
143 if (n<0 || x<0.0 || (x==0.0 && (n==0 || n==1)))
144 G4cout <<
"*** WARNING in G4ecpssrBaseLixsModel::ExpIntFunction: bad arguments in ExpIntFunction"
147 if (n==0) ans=
G4Exp(-x)/
x;
149 if (x==0.0) ans=1.0/nm1;
156 for (i=1;i<=maxit;i++) {
163 if (std::fabs(del-1.0) <
eps) {
169 ans = (nm1!=0 ? 1.0/nm1 : -std::log(x)-euler);
171 for (i=1;i<=maxit;i++) {
173 if (i !=nm1) del = -fact/(i-nm1);
176 for (ii=1;ii<=nm1;ii++) psi +=1.0/ii;
177 del=fact*(-std::log(x)+psi);
180 if (std::fabs(del) < std::fabs(ans)*
eps)
return ans;
194 if (zTarget <=4)
return 0.;
219 G4cout <<
"*** WARNING in G4ecpssrBaseLixsModel::CalculateL1CrossSection : Proton or Alpha incident particles only. " <<
G4endl;
228 static const G4double zlshell= 4.15;
230 G4double screenedzTarget = zTarget-zlshell;
231 static const G4double rydbergMeV= 13.6056923e-6;
235 G4double tetal1 = (l1BindingEnergy*nl*nl)/((screenedzTarget*screenedzTarget)*rydbergMeV);
240 G4double reducedEnergy = (energyIncident*
electron_mass_c2)/(massIncident*rydbergMeV*screenedzTarget*screenedzTarget);
246 G4double sigma0 = 8.*
pi*(zIncident*zIncident)*bohrPow2Barn*std::pow(screenedzTarget,-4.);
254 static const G4double l1AnalyticalApproximation= 1.5;
255 G4double x1 =(nl*l1AnalyticalApproximation)/velocityl1;
261 G4double electrIonizationEnergyl1=0.;
266 if ( x1<=0.035) electrIonizationEnergyl1= 0.75*
pi*(std::log(1./(x1*x1))-1.);
270 electrIonizationEnergyl1 =
G4Exp(-2.*x1)/(0.031+(0.213*std::pow(x1,0.5))+(0.005*x1)-(0.069*std::pow(x1,3./2.))+(0.324*x1*x1));
272 {
if ( x1<=11.) electrIonizationEnergyl1 =2.*
G4Exp(-2.*x1)/std::pow(x1,1.6);}
275 G4double hFunctionl1 =(electrIonizationEnergyl1*2.*nl)/(tetal1*std::pow(velocityl1,3));
280 G4double gFunctionl1 = (1.+(9.*velocityl1)+(31.*velocityl1*velocityl1)+(49.*std::pow(velocityl1,3.))+(162.*std::pow(velocityl1,4.))+(63.*std::pow(velocityl1,5.))+(18.*std::pow(velocityl1,6.))+(1.97*std::pow(velocityl1,7.)))/std::pow(1.+velocityl1,9.);
285 G4double sigmaPSS_l1 = 1.+(((2.*zIncident)/(screenedzTarget*tetal1))*(gFunctionl1-hFunctionl1));
294 G4double yl1Formula=0.4*(screenedzTarget/cNaturalUnit)*(screenedzTarget/cNaturalUnit)/(nl*velocityl1/sigmaPSS_l1);
299 G4double l1relativityCorrection = std::pow((1.+(1.1*yl1Formula*yl1Formula)),0.5)+yl1Formula;
313 if ( velocityl1 <20. )
316 L1etaOverTheta2 =(reducedEnergy* l1relativityCorrection)/((tetal1*sigmaPSS_l1)*(tetal1*sigmaPSS_l1));
322 if ( ((tetal1*sigmaPSS_l1) >=0.2) && ((tetal1*sigmaPSS_l1) <=2.6670) && (L1etaOverTheta2>=0.1e-3) && (L1etaOverTheta2<=0.866
e2) )
323 universalFunction_l1 =
FunctionFL1((tetal1*sigmaPSS_l1),L1etaOverTheta2);
327 sigmaPSSR_l1 = (sigma0/(tetal1*sigmaPSS_l1))*universalFunction_l1;
334 L1etaOverTheta2 = reducedEnergy/(tetal1*tetal1);
340 if ( (tetal1 >=0.2) && (tetal1 <=2.6670) && (L1etaOverTheta2>=0.1e-3) && (L1etaOverTheta2<=0.866
e2) )
341 universalFunction_l1 =
FunctionFL1(tetal1,L1etaOverTheta2);
343 if (
verboseLevel>0)
G4cout <<
"at medium and high velocity range, universalFunction_l1 =" << universalFunction_l1 <<
G4endl;
345 sigmaPSSR_l1 = (sigma0/tetal1)*universalFunction_l1;
351 G4double pssDeltal1 = (4./(systemMass *sigmaPSS_l1*tetal1))*(sigmaPSS_l1/velocityl1)*(sigmaPSS_l1/velocityl1);
357 if (pssDeltal1>1)
return 0.;
359 G4double energyLossl1 = std::pow(1-pssDeltal1,0.5);
366 (8.*
pi*zIncident/systemMass)*std::pow(tetal1*sigmaPSS_l1,-2.)*std::pow(velocityl1/sigmaPSS_l1,-3.)*(zTarget/screenedzTarget);
370 G4double cParameterl1 =2.* coulombDeflectionl1/(energyLossl1*(energyLossl1+1.));
377 G4double crossSection_L1 = coulombDeflectionFunction_l1 * sigmaPSSR_l1;
384 if (crossSection_L1 >= 0)
386 return crossSection_L1 *
barn;
397 if (zTarget <=13 )
return 0.;
421 G4cout <<
"*** WARNING in G4ecpssrBaseLixsModel::CalculateL2CrossSection : Proton or Alpha incident particles only. " <<
G4endl;
435 G4double screenedzTarget = zTarget-zlshell;
437 const G4double rydbergMeV= 13.6056923e-6;
441 G4double tetal2 = (l2BindingEnergy*nl*nl)/((screenedzTarget*screenedzTarget)*rydbergMeV);
445 G4double reducedEnergy = (energyIncident*
electron_mass_c2)/(massIncident*rydbergMeV*screenedzTarget*screenedzTarget);
449 G4double sigma0 = 8.*
pi*(zIncident*zIncident)*bohrPow2Barn*std::pow(screenedzTarget,-4.);
455 const G4double l23AnalyticalApproximation= 1.25;
457 G4double x2 = (nl*l23AnalyticalApproximation)/velocityl2;
461 G4double electrIonizationEnergyl2=0.;
463 if ( x2<=0.035) electrIonizationEnergyl2= 0.75*
pi*(std::log(1./(x2*x2))-1.);
467 electrIonizationEnergyl2 =
G4Exp(-2.*x2)/(0.031+(0.213*std::pow(x2,0.5))+(0.005*x2)-(0.069*std::pow(x2,3./2.))+(0.324*x2*x2));
469 {
if ( x2<=11.) electrIonizationEnergyl2 =2.*
G4Exp(-2.*x2)/std::pow(x2,1.6); }
472 G4double hFunctionl2 =(electrIonizationEnergyl2*2.*nl)/(tetal2*std::pow(velocityl2,3));
476 G4double gFunctionl2 = (1.+(10.*velocityl2)+(45.*velocityl2*velocityl2)+(102.*std::pow(velocityl2,3.))+(331.*std::pow(velocityl2,4.))+(6.7*std::pow(velocityl2,5.))+(58.*std::pow(velocityl2,6.))+(7.8*std::pow(velocityl2,7.))+ (0.888*std::pow(velocityl2,8.)) )/std::pow(1.+velocityl2,10.);
481 G4double sigmaPSS_l2 = 1.+(((2.*zIncident)/(screenedzTarget*tetal2))*(gFunctionl2-hFunctionl2));
487 G4double yl2Formula=0.15*(screenedzTarget/cNaturalUnit)*(screenedzTarget/cNaturalUnit)/(velocityl2/sigmaPSS_l2);
489 G4double l2relativityCorrection = std::pow((1.+(1.1*yl2Formula*yl2Formula)),0.5)+yl2Formula;
497 if ( velocityl2 < 20. )
500 L2etaOverTheta2 = (reducedEnergy*l2relativityCorrection)/((sigmaPSS_l2*tetal2)*(sigmaPSS_l2*tetal2));
502 if ( (tetal2*sigmaPSS_l2>=0.2) && (tetal2*sigmaPSS_l2<=2.6670) && (L2etaOverTheta2>=0.1e-3) && (L2etaOverTheta2<=0.866
e2) )
503 universalFunction_l2 =
FunctionFL2((tetal2*sigmaPSS_l2),L2etaOverTheta2);
505 sigmaPSSR_l2 = (sigma0/(tetal2*sigmaPSS_l2))*universalFunction_l2;
512 L2etaOverTheta2 = reducedEnergy /(tetal2*tetal2);
514 if ( (tetal2>=0.2) && (tetal2<=2.6670) && (L2etaOverTheta2>=0.1e-3) && (L2etaOverTheta2<=0.866
e2) )
515 universalFunction_l2 =
FunctionFL2((tetal2),L2etaOverTheta2);
517 sigmaPSSR_l2 = (sigma0/tetal2)*universalFunction_l2;
523 G4double pssDeltal2 = (4./(systemMass*sigmaPSS_l2*tetal2))*(sigmaPSS_l2/velocityl2)*(sigmaPSS_l2/velocityl2);
525 if (pssDeltal2>1)
return 0.;
527 G4double energyLossl2 = std::pow(1-pssDeltal2,0.5);
532 =(8.*
pi*zIncident/systemMass)*std::pow(tetal2*sigmaPSS_l2,-2.)*std::pow(velocityl2/sigmaPSS_l2,-3.)*(zTarget/screenedzTarget);
534 G4double cParameterl2 = 2.*coulombDeflectionl2/(energyLossl2*(energyLossl2+1.));
541 G4double crossSection_L2 = coulombDeflectionFunction_l2 * sigmaPSSR_l2;
547 if (crossSection_L2 >= 0)
549 return crossSection_L2 *
barn;
560 if (zTarget <=13)
return 0.;
586 G4cout <<
"*** WARNING in G4ecpssrBaseLixsModel::CalculateL3CrossSection : Proton or Alpha incident particles only. " <<
G4endl;
600 G4double screenedzTarget = zTarget-zlshell;
602 const G4double rydbergMeV= 13.6056923e-6;
606 G4double tetal3 = (l3BindingEnergy*nl*nl)/((screenedzTarget*screenedzTarget)*rydbergMeV);
610 G4double reducedEnergy = (energyIncident*
electron_mass_c2)/(massIncident*rydbergMeV*screenedzTarget*screenedzTarget);
614 G4double sigma0 = 8.*
pi*(zIncident*zIncident)*bohrPow2Barn*std::pow(screenedzTarget,-4.);
620 const G4double l23AnalyticalApproximation= 1.25;
622 G4double x3 = (nl*l23AnalyticalApproximation)/velocityl3;
626 G4double electrIonizationEnergyl3=0.;
628 if ( x3<=0.035) electrIonizationEnergyl3= 0.75*
pi*(std::log(1./(x3*x3))-1.);
631 if ( x3<=3.) electrIonizationEnergyl3 =
G4Exp(-2.*x3)/(0.031+(0.213*std::pow(x3,0.5))+(0.005*x3)-(0.069*std::pow(x3,3./2.))+(0.324*x3*x3));
634 if ( x3<=11.) electrIonizationEnergyl3 =2.*
G4Exp(-2.*x3)/std::pow(x3,1.6);}
637 G4double hFunctionl3 =(electrIonizationEnergyl3*2.*nl)/(tetal3*std::pow(velocityl3,3));
641 G4double gFunctionl3 = (1.+(10.*velocityl3)+(45.*velocityl3*velocityl3)+(102.*std::pow(velocityl3,3.))+(331.*std::pow(velocityl3,4.))+(6.7*std::pow(velocityl3,5.))+(58.*std::pow(velocityl3,6.))+(7.8*std::pow(velocityl3,7.))+ (0.888*std::pow(velocityl3,8.)) )/std::pow(1.+velocityl3,10.);
646 G4double sigmaPSS_l3 = 1.+(((2.*zIncident)/(screenedzTarget*tetal3))*(gFunctionl3-hFunctionl3));
652 G4double yl3Formula=0.15*(screenedzTarget/cNaturalUnit)*(screenedzTarget/cNaturalUnit)/(velocityl3/sigmaPSS_l3);
654 G4double l3relativityCorrection = std::pow((1.+(1.1*yl3Formula*yl3Formula)),0.5)+yl3Formula;
662 if ( velocityl3 < 20. )
665 L3etaOverTheta2 = (reducedEnergy* l3relativityCorrection)/((sigmaPSS_l3*tetal3)*(sigmaPSS_l3*tetal3));
667 if ( (tetal3*sigmaPSS_l3>=0.2) && (tetal3*sigmaPSS_l3<=2.6670) && (L3etaOverTheta2>=0.1e-3) && (L3etaOverTheta2<=0.866
e2) )
669 universalFunction_l3 = 2.*
FunctionFL2((tetal3*sigmaPSS_l3), L3etaOverTheta2 );
671 sigmaPSSR_l3 = (sigma0/(tetal3*sigmaPSS_l3))*universalFunction_l3;
681 L3etaOverTheta2 = reducedEnergy/(tetal3*tetal3);
683 if ( (tetal3>=0.2) && (tetal3<=2.6670) && (L3etaOverTheta2>=0.1e-3) && (L3etaOverTheta2<=0.866
e2) )
685 universalFunction_l3 = 2.*
FunctionFL2(tetal3, L3etaOverTheta2 );
687 sigmaPSSR_l3 = (sigma0/tetal3)*universalFunction_l3;
692 G4double pssDeltal3 = (4./(systemMass*sigmaPSS_l3*tetal3))*(sigmaPSS_l3/velocityl3)*(sigmaPSS_l3/velocityl3);
696 if (pssDeltal3>1)
return 0.;
698 G4double energyLossl3 = std::pow(1-pssDeltal3,0.5);
703 (8.*
pi*zIncident/systemMass)*std::pow(tetal3*sigmaPSS_l3,-2.)*std::pow(velocityl3/sigmaPSS_l3,-3.)*(zTarget/screenedzTarget);
705 G4double cParameterl3 = 2.*coulombDeflectionl3/(energyLossl3*(energyLossl3+1.));
712 G4double crossSection_L3 = coulombDeflectionFunction_l3 * sigmaPSSR_l3;
718 if (crossSection_L3 >= 0)
720 return crossSection_L3 *
barn;
740 G4cout <<
"*** WARNING in G4ecpssrBaseLixsModel::CalculateVelocity : Proton or Alpha incident particles only. " <<
G4endl;
747 G4double screenedzTarget = zTarget- zlshell;
749 const G4double rydbergMeV= 13.6056923e-6;
753 G4double tetali = (liBindingEnergy*nl*nl)/(screenedzTarget*screenedzTarget*rydbergMeV);
755 G4double reducedEnergy = (energyIncident*
electron_mass_c2)/(massIncident*rydbergMeV*screenedzTarget*screenedzTarget);
757 G4double velocity = 2.*nl*std::pow(reducedEnergy,0.5)/tetali;
803 std::vector<double>::iterator
t1 = t2-1;
805 std::vector<double>::iterator e12 = std::upper_bound(
aVecMap1[(*t1)].begin(),
aVecMap1[(*t1)].end(), theta);
806 std::vector<double>::iterator e11 = e12-1;
808 std::vector<double>::iterator e22 = std::upper_bound(
aVecMap1[(*t2)].begin(),
aVecMap1[(*t2)].end(), theta);
809 std::vector<double>::iterator e21 = e22-1;
818 xs11 =
FL1Data[valueT1][valueE11];
819 xs12 =
FL1Data[valueT1][valueE12];
820 xs21 =
FL1Data[valueT2][valueE21];
821 xs22 =
FL1Data[valueT2][valueE22];
837 G4double xsProduct = xs11 * xs12 * xs21 * xs22;
839 if (xs11==0 || xs12==0 ||xs21==0 ||xs22==0)
return (0.);
894 std::vector<double>::iterator
t1 = t2-1;
896 std::vector<double>::iterator e12 = std::upper_bound(
aVecMap2[(*t1)].begin(),
aVecMap2[(*t1)].end(), theta);
897 std::vector<double>::iterator e11 = e12-1;
899 std::vector<double>::iterator e22 = std::upper_bound(
aVecMap2[(*t2)].begin(),
aVecMap2[(*t2)].end(), theta);
900 std::vector<double>::iterator e21 = e22-1;
909 xs11 =
FL2Data[valueT1][valueE11];
910 xs12 =
FL2Data[valueT1][valueE12];
911 xs21 =
FL2Data[valueT2][valueE21];
912 xs22 =
FL2Data[valueT2][valueE22];
928 G4double xsProduct = xs11 * xs12 * xs21 * xs22;
930 if (xs11==0 || xs12==0 ||xs21==0 ||xs22==0)
return (0.);
979 G4double a = (std::log10(xs2)-std::log10(xs1)) / (std::log10(e2)-std::log10(e1));
980 G4double b = std::log10(xs2) - a*std::log10(e2);