ECCE @ EIC Software
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
crc32.c
Go to the documentation of this file. Or view the newest version in sPHENIX GitHub for file crc32.c
1 /* crc32.c -- compute the CRC-32 of a data stream
2  * Copyright (C) 1995-2006, 2010, 2011, 2012, 2016 Mark Adler
3  * For conditions of distribution and use, see copyright notice in zlib.h
4  *
5  * Thanks to Rodney Brown <rbrown64@csc.com.au> for his contribution of faster
6  * CRC methods: exclusive-oring 32 bits of data at a time, and pre-computing
7  * tables for updating the shift register in one step with three exclusive-ors
8  * instead of four steps with four exclusive-ors. This results in about a
9  * factor of two increase in speed on a Power PC G4 (PPC7455) using gcc -O3.
10  */
11 
12 
13 /*
14  Note on the use of DYNAMIC_CRC_TABLE: there is no mutex or semaphore
15  protection on the static variables used to control the first-use generation
16  of the crc tables. Therefore, if you #define DYNAMIC_CRC_TABLE, you should
17  first call get_crc_table() to initialize the tables before allowing more than
18  one thread to use crc32().
19 
20  DYNAMIC_CRC_TABLE and MAKECRCH can be #defined to write out crc32.h.
21  */
22 
23 #ifdef MAKECRCH
24 # include <stdio.h>
25 # ifndef DYNAMIC_CRC_TABLE
26 # define DYNAMIC_CRC_TABLE
27 # endif /* !DYNAMIC_CRC_TABLE */
28 #endif /* MAKECRCH */
29 
30 #include "zutil.h" /* for STDC and FAR definitions */
31 
32 /* Definitions for doing the crc four data bytes at a time. */
33 #if !defined(NOBYFOUR) && defined(Z_U4)
34 # define BYFOUR
35 #endif
36 #ifdef BYFOUR
37  local unsigned long crc32_little OF((unsigned long,
38  const unsigned char FAR *, z_size_t));
39  local unsigned long crc32_big OF((unsigned long,
40  const unsigned char FAR *, z_size_t));
41 # define TBLS 8
42 #else
43 # define TBLS 1
44 #endif /* BYFOUR */
45 
46 /* Local functions for crc concatenation */
47 local unsigned long gf2_matrix_times OF((unsigned long *mat,
48  unsigned long vec));
49 local void gf2_matrix_square OF((unsigned long *square, unsigned long *mat));
50 local uLong crc32_combine_ OF((uLong crc1, uLong crc2, z_off64_t len2));
51 
52 
53 #ifdef DYNAMIC_CRC_TABLE
54 
55 local volatile int crc_table_empty = 1;
56 local z_crc_t FAR crc_table[TBLS][256];
57 local void make_crc_table OF((void));
58 #ifdef MAKECRCH
59  local void write_table OF((FILE *, const z_crc_t FAR *));
60 #endif /* MAKECRCH */
61 /*
62  Generate tables for a byte-wise 32-bit CRC calculation on the polynomial:
63  x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1.
64 
65  Polynomials over GF(2) are represented in binary, one bit per coefficient,
66  with the lowest powers in the most significant bit. Then adding polynomials
67  is just exclusive-or, and multiplying a polynomial by x is a right shift by
68  one. If we call the above polynomial p, and represent a byte as the
69  polynomial q, also with the lowest power in the most significant bit (so the
70  byte 0xb1 is the polynomial x^7+x^3+x+1), then the CRC is (q*x^32) mod p,
71  where a mod b means the remainder after dividing a by b.
72 
73  This calculation is done using the shift-register method of multiplying and
74  taking the remainder. The register is initialized to zero, and for each
75  incoming bit, x^32 is added mod p to the register if the bit is a one (where
76  x^32 mod p is p+x^32 = x^26+...+1), and the register is multiplied mod p by
77  x (which is shifting right by one and adding x^32 mod p if the bit shifted
78  out is a one). We start with the highest power (least significant bit) of
79  q and repeat for all eight bits of q.
80 
81  The first table is simply the CRC of all possible eight bit values. This is
82  all the information needed to generate CRCs on data a byte at a time for all
83  combinations of CRC register values and incoming bytes. The remaining tables
84  allow for word-at-a-time CRC calculation for both big-endian and little-
85  endian machines, where a word is four bytes.
86 */
87 local void make_crc_table()
88 {
89  z_crc_t c;
90  int n, k;
91  z_crc_t poly; /* polynomial exclusive-or pattern */
92  /* terms of polynomial defining this crc (except x^32): */
93  static volatile int first = 1; /* flag to limit concurrent making */
94  static const unsigned char p[] = {0,1,2,4,5,7,8,10,11,12,16,22,23,26};
95 
96  /* See if another task is already doing this (not thread-safe, but better
97  than nothing -- significantly reduces duration of vulnerability in
98  case the advice about DYNAMIC_CRC_TABLE is ignored) */
99  if (first) {
100  first = 0;
101 
102  /* make exclusive-or pattern from polynomial (0xedb88320UL) */
103  poly = 0;
104  for (n = 0; n < (int)(sizeof(p)/sizeof(unsigned char)); n++)
105  poly |= (z_crc_t)1 << (31 - p[n]);
106 
107  /* generate a crc for every 8-bit value */
108  for (n = 0; n < 256; n++) {
109  c = (z_crc_t)n;
110  for (k = 0; k < 8; k++)
111  c = c & 1 ? poly ^ (c >> 1) : c >> 1;
112  crc_table[0][n] = c;
113  }
114 
115 #ifdef BYFOUR
116  /* generate crc for each value followed by one, two, and three zeros,
117  and then the byte reversal of those as well as the first table */
118  for (n = 0; n < 256; n++) {
119  c = crc_table[0][n];
120  crc_table[4][n] = ZSWAP32(c);
121  for (k = 1; k < 4; k++) {
122  c = crc_table[0][c & 0xff] ^ (c >> 8);
123  crc_table[k][n] = c;
124  crc_table[k + 4][n] = ZSWAP32(c);
125  }
126  }
127 #endif /* BYFOUR */
128 
129  crc_table_empty = 0;
130  }
131  else { /* not first */
132  /* wait for the other guy to finish (not efficient, but rare) */
133  while (crc_table_empty)
134  ;
135  }
136 
137 #ifdef MAKECRCH
138  /* write out CRC tables to crc32.h */
139  {
140  FILE *out;
141 
142  out = fopen("crc32.h", "w");
143  if (out == NULL) return;
144  fprintf(out, "/* crc32.h -- tables for rapid CRC calculation\n");
145  fprintf(out, " * Generated automatically by crc32.c\n */\n\n");
146  fprintf(out, "local const z_crc_t FAR ");
147  fprintf(out, "crc_table[TBLS][256] =\n{\n {\n");
148  write_table(out, crc_table[0]);
149 # ifdef BYFOUR
150  fprintf(out, "#ifdef BYFOUR\n");
151  for (k = 1; k < 8; k++) {
152  fprintf(out, " },\n {\n");
153  write_table(out, crc_table[k]);
154  }
155  fprintf(out, "#endif\n");
156 # endif /* BYFOUR */
157  fprintf(out, " }\n};\n");
158  fclose(out);
159  }
160 #endif /* MAKECRCH */
161 }
162 
163 #ifdef MAKECRCH
164 local void write_table(out, table)
165  FILE *out;
166  const z_crc_t FAR *table;
167 {
168  int n;
169 
170  for (n = 0; n < 256; n++)
171  fprintf(out, "%s0x%08lxUL%s", n % 5 ? "" : " ",
172  (unsigned long)(table[n]),
173  n == 255 ? "\n" : (n % 5 == 4 ? ",\n" : ", "));
174 }
175 #endif /* MAKECRCH */
176 
177 #else /* !DYNAMIC_CRC_TABLE */
178 /* ========================================================================
179  * Tables of CRC-32s of all single-byte values, made by make_crc_table().
180  */
181 #include "crc32.h"
182 #endif /* DYNAMIC_CRC_TABLE */
183 
184 /* =========================================================================
185  * This function can be used by asm versions of crc32()
186  */
187 const z_crc_t FAR * ZEXPORT get_crc_table()
188 {
189 #ifdef DYNAMIC_CRC_TABLE
190  if (crc_table_empty)
191  make_crc_table();
192 #endif /* DYNAMIC_CRC_TABLE */
193  return (const z_crc_t FAR *)crc_table;
194 }
195 
196 /* ========================================================================= */
197 #define DO1 crc = crc_table[0][((int)crc ^ (*buf++)) & 0xff] ^ (crc >> 8)
198 #define DO8 DO1; DO1; DO1; DO1; DO1; DO1; DO1; DO1
199 
200 /* ========================================================================= */
201 unsigned long ZEXPORT crc32_z(crc, buf, len)
202  unsigned long crc;
203  const unsigned char FAR *buf;
204  z_size_t len;
205 {
206  if (buf == Z_NULL) return 0UL;
207 
208 #ifdef DYNAMIC_CRC_TABLE
209  if (crc_table_empty)
210  make_crc_table();
211 #endif /* DYNAMIC_CRC_TABLE */
212 
213 #ifdef BYFOUR
214  if (sizeof(void *) == sizeof(ptrdiff_t)) {
215  z_crc_t endian;
216 
217  endian = 1;
218  if (*((unsigned char *)(&endian)))
219  return crc32_little(crc, buf, len);
220  else
221  return crc32_big(crc, buf, len);
222  }
223 #endif /* BYFOUR */
224  crc = crc ^ 0xffffffffUL;
225  while (len >= 8) {
226  DO8;
227  len -= 8;
228  }
229  if (len) do {
230  DO1;
231  } while (--len);
232  return crc ^ 0xffffffffUL;
233 }
234 
235 /* ========================================================================= */
236 unsigned long ZEXPORT crc32(crc, buf, len)
237  unsigned long crc;
238  const unsigned char FAR *buf;
239  uInt len;
240 {
241  return crc32_z(crc, buf, len);
242 }
243 
244 #ifdef BYFOUR
245 
246 /*
247  This BYFOUR code accesses the passed unsigned char * buffer with a 32-bit
248  integer pointer type. This violates the strict aliasing rule, where a
249  compiler can assume, for optimization purposes, that two pointers to
250  fundamentally different types won't ever point to the same memory. This can
251  manifest as a problem only if one of the pointers is written to. This code
252  only reads from those pointers. So long as this code remains isolated in
253  this compilation unit, there won't be a problem. For this reason, this code
254  should not be copied and pasted into a compilation unit in which other code
255  writes to the buffer that is passed to these routines.
256  */
257 
258 /* ========================================================================= */
259 #define DOLIT4 c ^= *buf4++; \
260  c = crc_table[3][c & 0xff] ^ crc_table[2][(c >> 8) & 0xff] ^ \
261  crc_table[1][(c >> 16) & 0xff] ^ crc_table[0][c >> 24]
262 #define DOLIT32 DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4
263 
264 /* ========================================================================= */
265 local unsigned long crc32_little(crc, buf, len)
266  unsigned long crc;
267  const unsigned char FAR *buf;
268  z_size_t len;
269 {
270  register z_crc_t c;
271  register const z_crc_t FAR *buf4;
272 
273  c = (z_crc_t)crc;
274  c = ~c;
275  while (len && ((ptrdiff_t)buf & 3)) {
276  c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8);
277  len--;
278  }
279 
280  buf4 = (const z_crc_t FAR *)(const void FAR *)buf;
281  while (len >= 32) {
282  DOLIT32;
283  len -= 32;
284  }
285  while (len >= 4) {
286  DOLIT4;
287  len -= 4;
288  }
289  buf = (const unsigned char FAR *)buf4;
290 
291  if (len) do {
292  c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8);
293  } while (--len);
294  c = ~c;
295  return (unsigned long)c;
296 }
297 
298 /* ========================================================================= */
299 #define DOBIG4 c ^= *buf4++; \
300  c = crc_table[4][c & 0xff] ^ crc_table[5][(c >> 8) & 0xff] ^ \
301  crc_table[6][(c >> 16) & 0xff] ^ crc_table[7][c >> 24]
302 #define DOBIG32 DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4
303 
304 /* ========================================================================= */
305 local unsigned long crc32_big(crc, buf, len)
306  unsigned long crc;
307  const unsigned char FAR *buf;
308  z_size_t len;
309 {
310  register z_crc_t c;
311  register const z_crc_t FAR *buf4;
312 
313  c = ZSWAP32((z_crc_t)crc);
314  c = ~c;
315  while (len && ((ptrdiff_t)buf & 3)) {
316  c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8);
317  len--;
318  }
319 
320  buf4 = (const z_crc_t FAR *)(const void FAR *)buf;
321  while (len >= 32) {
322  DOBIG32;
323  len -= 32;
324  }
325  while (len >= 4) {
326  DOBIG4;
327  len -= 4;
328  }
329  buf = (const unsigned char FAR *)buf4;
330 
331  if (len) do {
332  c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8);
333  } while (--len);
334  c = ~c;
335  return (unsigned long)(ZSWAP32(c));
336 }
337 
338 #endif /* BYFOUR */
339 
340 #define GF2_DIM 32 /* dimension of GF(2) vectors (length of CRC) */
341 
342 /* ========================================================================= */
343 local unsigned long gf2_matrix_times(mat, vec)
344  unsigned long *mat;
345  unsigned long vec;
346 {
347  unsigned long sum;
348 
349  sum = 0;
350  while (vec) {
351  if (vec & 1)
352  sum ^= *mat;
353  vec >>= 1;
354  mat++;
355  }
356  return sum;
357 }
358 
359 /* ========================================================================= */
361  unsigned long *square;
362  unsigned long *mat;
363 {
364  int n;
365 
366  for (n = 0; n < GF2_DIM; n++)
367  square[n] = gf2_matrix_times(mat, mat[n]);
368 }
369 
370 /* ========================================================================= */
371 local uLong crc32_combine_(crc1, crc2, len2)
372  uLong crc1;
373  uLong crc2;
374  z_off64_t len2;
375 {
376  int n;
377  unsigned long row;
378  unsigned long even[GF2_DIM]; /* even-power-of-two zeros operator */
379  unsigned long odd[GF2_DIM]; /* odd-power-of-two zeros operator */
380 
381  /* degenerate case (also disallow negative lengths) */
382  if (len2 <= 0)
383  return crc1;
384 
385  /* put operator for one zero bit in odd */
386  odd[0] = 0xedb88320UL; /* CRC-32 polynomial */
387  row = 1;
388  for (n = 1; n < GF2_DIM; n++) {
389  odd[n] = row;
390  row <<= 1;
391  }
392 
393  /* put operator for two zero bits in even */
394  gf2_matrix_square(even, odd);
395 
396  /* put operator for four zero bits in odd */
397  gf2_matrix_square(odd, even);
398 
399  /* apply len2 zeros to crc1 (first square will put the operator for one
400  zero byte, eight zero bits, in even) */
401  do {
402  /* apply zeros operator for this bit of len2 */
403  gf2_matrix_square(even, odd);
404  if (len2 & 1)
405  crc1 = gf2_matrix_times(even, crc1);
406  len2 >>= 1;
407 
408  /* if no more bits set, then done */
409  if (len2 == 0)
410  break;
411 
412  /* another iteration of the loop with odd and even swapped */
413  gf2_matrix_square(odd, even);
414  if (len2 & 1)
415  crc1 = gf2_matrix_times(odd, crc1);
416  len2 >>= 1;
417 
418  /* if no more bits set, then done */
419  } while (len2 != 0);
420 
421  /* return combined crc */
422  crc1 ^= crc2;
423  return crc1;
424 }
425 
426 /* ========================================================================= */
427 uLong ZEXPORT crc32_combine(crc1, crc2, len2)
428  uLong crc1;
429  uLong crc2;
430  z_off_t len2;
431 {
432  return crc32_combine_(crc1, crc2, len2);
433 }
434 
435 uLong ZEXPORT crc32_combine64(crc1, crc2, len2)
436  uLong crc1;
437  uLong crc2;
438  z_off64_t len2;
439 {
440  return crc32_combine_(crc1, crc2, len2);
441 }