ECCE @ EIC Software
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
G4TwistBoxSide.hh
Go to the documentation of this file. Or view the newest version in sPHENIX GitHub for file G4TwistBoxSide.hh
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // G4TwistBoxSide
27 //
28 // Class description:
29 //
30 // G4TwistBoxSide describes a twisted boundary surface for a trapezoid.
31 
32 // Author: 27-Oct-2004 - O.Link (Oliver.Link@cern.ch)
33 // --------------------------------------------------------------------
34 #ifndef G4TWISTBOXSIDE_HH
35 #define G4TWISTBOXSIDE_HH
36 
37 #include "G4VTwistSurface.hh"
38 
39 #include <vector>
40 
42 {
43  public: // with description
44 
46  G4double PhiTwist, // twist angle
47  G4double pDz, // half z lenght
48  G4double pTheta, // direction between end planes
49  G4double pPhi, // by polar and azimutal angles
50  G4double pDy1, // half y length at -pDz
51  G4double pDx1, // half x length at -pDz,-pDy
52  G4double pDx2, // half x length at -pDz,+pDy
53  G4double pDy2, // half y length at +pDz
54  G4double pDx3, // half x length at +pDz,-pDy
55  G4double pDx4, // half x length at +pDz,+pDy
56  G4double pAlph, // tilt angle at +pDz
57  G4double AngleSide // parity
58  );
59 
60  virtual ~G4TwistBoxSide();
61 
62  virtual G4ThreeVector GetNormal(const G4ThreeVector& xx,
63  G4bool isGlobal = false) ;
64 
65  virtual G4int DistanceToSurface(const G4ThreeVector& gp,
66  const G4ThreeVector& gv,
67  G4ThreeVector gxx[],
68  G4double distance[],
69  G4int areacode[],
70  G4bool isvalid[],
71  EValidate validate = kValidateWithTol);
72 
73  virtual G4int DistanceToSurface(const G4ThreeVector& gp,
74  G4ThreeVector gxx[],
75  G4double distance[],
76  G4int areacode[]);
77 
78  public: // without description
79 
80  G4TwistBoxSide(__void__&);
81  // Fake default constructor for usage restricted to direct object
82  // persistency for clients requiring preallocation of memory for
83  // persistifiable objects.
84 
85  private:
86 
87  virtual G4int GetAreaCode(const G4ThreeVector& xx,
88  G4bool withTol = true);
89  virtual void SetCorners();
90  virtual void SetBoundaries();
91 
94  G4bool isglobal = false);
95 
97  G4bool isGlobal = false);
98  virtual G4double GetBoundaryMin(G4double phi);
99  virtual G4double GetBoundaryMax(G4double phi);
100  virtual G4double GetSurfaceArea();
101  virtual void GetFacets( G4int m, G4int n, G4double xyz[][3],
102  G4int faces[][4], G4int iside );
103 
104  inline G4double GetValueA(G4double phi);
105  inline G4double GetValueB(G4double phi);
106  inline G4ThreeVector NormAng(G4double phi, G4double u);
107  inline G4double Xcoef(G4double u, G4double phi);
108  // To calculate the w(u) function
109 
110  private:
111 
114 
118 
122 
123  G4double fDz; // Half-length along the z axis
124 
126  G4double fTAlph; // std::tan(fAlph)
127 
128  G4double fPhiTwist; // twist angle ( dphi in surface equation)
129 
131 
134 
135  G4double fDx4plus2; // fDx4 + fDx2 == a2/2 + a1/2
136  G4double fDx4minus2; // fDx4 - fDx2 -
137  G4double fDx3plus1; // fDx3 + fDx1 == d2/2 + d1/2
138  G4double fDx3minus1; // fDx3 - fDx1 -
139  G4double fDy2plus1; // fDy2 + fDy1 == b2/2 + b1/2
140  G4double fDy2minus1; // fDy2 - fDy1 -
141  G4double fa1md1; // 2 fDx2 - 2 fDx1 == a1 - d1
142  G4double fa2md2; // 2 fDx4 - 2 fDx3
143 };
144 
145 //========================================================
146 // inline functions
147 //========================================================
148 
149 inline
151 {
152  return ( fDx4plus2 + fDx4minus2 * ( 2 * phi ) / fPhiTwist ) ;
153 }
154 
155 
156 inline
158 {
159  return ( fDy2plus1 + fDy2minus1 * ( 2 * phi ) / fPhiTwist ) ;
160 }
161 
162 inline
164 {
165 
166  return GetValueA(phi)/2. + u*fTAlph ;
167 
168 }
169 
170 inline G4ThreeVector
172 {
173  // function to calculate a point on the surface, given by parameters phi,u
174 
175  G4ThreeVector SurfPoint ( Xcoef(u,phi) * std::cos(phi)
176  - u * std::sin(phi) + fdeltaX*phi/fPhiTwist,
177  Xcoef(u,phi) * std::sin(phi)
178  + u * std::cos(phi) + fdeltaY*phi/fPhiTwist,
179  2*fDz*phi/fPhiTwist );
180 
181  if (isGlobal) { return (fRot * SurfPoint + fTrans); }
182  return SurfPoint;
183 }
184 
185 inline
187 {
188  return -0.5*GetValueB(phi) ;
189 }
190 
191 inline
193 {
194  return 0.5*GetValueB(phi) ;
195 }
196 
197 inline
199 {
200  return (fDz*(std::sqrt(16*fDy1*fDy1
201  + (fa1md1 + 4*fDy1*fTAlph)*(fa1md1 + 4*fDy1*fTAlph))
202  + std::sqrt(16*fDy1*fDy1 + (fa2md2 + 4*fDy1*fTAlph)
203  * (fa2md2 + 4*fDy1*fTAlph))))/2. ;
204 }
205 
206 inline
208 {
209  // function to calculate the norm at a given point on the surface
210  // replace a1-d1
211 
212  G4ThreeVector nvec( 4*fDz*(std::cos(phi) + fTAlph*std::sin(phi)) ,
213  4*fDz*(-(fTAlph*std::cos(phi)) + std::sin(phi)),
215  + 2*fDx4minus2*(-1 + fTAlph*phi)
216  + 2*fPhiTwist*(1 + fTAlph*fTAlph)*u
217  - 2*(fdeltaX - fdeltaY*fTAlph)*std::cos(phi)
218  - 2*(fdeltaY + fdeltaX*fTAlph)*std::sin(phi) );
219  return nvec.unit();
220 }
221 
222 #endif