ECCE @ EIC Software
Reference for
ECCE @ EIC
simulation and reconstruction software on GitHub
Home page
Related Pages
Modules
Namespaces
Classes
Files
External Links
File List
File Members
All
Classes
Namespaces
Files
Functions
Variables
Typedefs
Enumerations
Enumerator
Friends
Macros
Groups
Pages
G4Integrator.hh
Go to the documentation of this file.
Or view
the newest version in sPHENIX GitHub for file G4Integrator.hh
1
//
2
// ********************************************************************
3
// * License and Disclaimer *
4
// * *
5
// * The Geant4 software is copyright of the Copyright Holders of *
6
// * the Geant4 Collaboration. It is provided under the terms and *
7
// * conditions of the Geant4 Software License, included in the file *
8
// * LICENSE and available at http://cern.ch/geant4/license . These *
9
// * include a list of copyright holders. *
10
// * *
11
// * Neither the authors of this software system, nor their employing *
12
// * institutes,nor the agencies providing financial support for this *
13
// * work make any representation or warranty, express or implied, *
14
// * regarding this software system or assume any liability for its *
15
// * use. Please see the license in the file LICENSE and URL above *
16
// * for the full disclaimer and the limitation of liability. *
17
// * *
18
// * This code implementation is the result of the scientific and *
19
// * technical work of the GEANT4 collaboration. *
20
// * By using, copying, modifying or distributing the software (or *
21
// * any work based on the software) you agree to acknowledge its *
22
// * use in resulting scientific publications, and indicate your *
23
// * acceptance of all terms of the Geant4 Software license. *
24
// ********************************************************************
25
//
26
//
27
//
28
// Class description:
29
//
30
// Template class collecting integrator methods for generic funtions.
31
32
// History:
33
//
34
// 04.09.99 V.Grichine, first implementation based on G4SimpleIntegration class
35
// H.P.Wellisch, G.Cosmo, and E.Cherniaev advises
36
// 08.09.99 V.Grichine, methods involving orthogonal polynomials
37
//
38
39
40
#ifndef G4INTEGRATOR_HH
41
#define G4INTEGRATOR_HH 1
42
43
#include "
G4Types.hh
"
44
#include <cmath>
45
#include <
CLHEP/Units/PhysicalConstants.h
>
46
47
template
<
class
T,
class
F>
48
class
G4Integrator
49
{
50
public
:
// with description
51
52
G4Integrator
(){;}
53
~G4Integrator
(){;}
54
55
G4double
Simpson
(
T
& typeT, F
f
,
G4double
a
,
G4double
b
,
G4int
n
) ;
56
G4double
Simpson
(
T
* ptrT, F
f
,
G4double
a
,
G4double
b
,
G4int
n
) ;
57
G4double
Simpson
(
G4double
(*
f
)(
G4double
),
58
G4double
a
,
G4double
b
,
G4int
n
) ;
59
// Simpson integration method
60
61
G4double
AdaptiveGauss
(
T
& typeT, F
f
,
G4double
a
,
G4double
b
,
G4double
e
) ;
62
G4double
AdaptiveGauss
(
T
* ptrT, F
f
,
G4double
a
,
G4double
b
,
G4double
e
) ;
63
G4double
AdaptiveGauss
(
G4double
(*
f
)(
G4double
),
64
G4double
a
,
G4double
b
,
G4double
e
) ;
65
// Adaptive Gauss method
66
67
68
// Integration methods involving orthogohol polynomials
69
70
G4double
Legendre
(
T
& typeT, F
f
,
G4double
a
,
G4double
b
,
G4int
n
) ;
71
G4double
Legendre
(
T
* ptrT, F
f
,
G4double
a
,
G4double
b
,
G4int
n
) ;
72
G4double
Legendre
(
G4double
(*
f
)(
G4double
),
G4double
a
,
G4double
b
,
G4int
n
) ;
73
//
74
// Methods involving Legendre polynomials
75
76
G4double
Legendre10
(
T
& typeT, F
f
,
G4double
a
,
G4double
b
) ;
77
G4double
Legendre10
(
T
* ptrT, F
f
,
G4double
a
,
G4double
b
) ;
78
G4double
Legendre10
(
G4double
(*
f
)(
G4double
),
G4double
a
,
G4double
b
) ;
79
//
80
// Legendre10 is very fast and accurate enough
81
82
G4double
Legendre96
(
T
& typeT, F
f
,
G4double
a
,
G4double
b
) ;
83
G4double
Legendre96
(
T
* ptrT, F
f
,
G4double
a
,
G4double
b
) ;
84
G4double
Legendre96
(
G4double
(*
f
)(
G4double
),
G4double
a
,
G4double
b
) ;
85
//
86
// Legendre96 is very accurate and fast enough
87
88
G4double
Chebyshev
(
T
& typeT, F
f
,
G4double
a
,
G4double
b
,
G4int
n
) ;
89
G4double
Chebyshev
(
T
* ptrT, F
f
,
G4double
a
,
G4double
b
,
G4int
n
) ;
90
G4double
Chebyshev
(
G4double
(*
f
)(
G4double
),
G4double
a
,
G4double
b
,
G4int
n
) ;
91
//
92
// Methods involving Chebyshev polynomials
93
94
G4double
Laguerre
(
T
& typeT, F
f
,
G4double
alpha
,
G4int
n
) ;
95
G4double
Laguerre
(
T
* ptrT, F
f
,
G4double
alpha
,
G4int
n
) ;
96
G4double
Laguerre
(
G4double
(*
f
)(
G4double
),
G4double
alpha
,
G4int
n
) ;
97
//
98
// Method involving Laguerre polynomials
99
100
G4double
Hermite
(
T
& typeT, F
f
,
G4int
n
) ;
101
G4double
Hermite
(
T
* ptrT, F
f
,
G4int
n
) ;
102
G4double
Hermite
(
G4double
(*
f
)(
G4double
),
G4int
n
) ;
103
//
104
// Method involving Hermite polynomials
105
106
G4double
Jacobi
(
T
& typeT, F
f
,
G4double
alpha
,
G4double
beta,
G4int
n
) ;
107
G4double
Jacobi
(
T
* ptrT, F
f
,
G4double
alpha
,
G4double
beta,
G4int
n
) ;
108
G4double
Jacobi
(
G4double
(*
f
)(
G4double
),
G4double
alpha
,
109
G4double
beta,
G4int
n
) ;
110
// Method involving Jacobi polynomials
111
112
113
protected
:
114
115
// Auxiliary function for adaptive Gauss method
116
117
G4double
Gauss
(
T
& typeT, F
f
,
G4double
a
,
G4double
b
) ;
118
G4double
Gauss
(
T
* ptrT, F
f
,
G4double
a
,
G4double
b
) ;
119
G4double
Gauss
(
G4double
(*
f
)(
G4double
),
G4double
a
,
G4double
b
) ;
120
121
void
AdaptGauss
(
T
& typeT, F
f
,
G4double
a
,
G4double
b
,
122
G4double
e
,
G4double
&
sum
,
G4int
&
n
) ;
123
void
AdaptGauss
(
T
* typeT, F
f
,
G4double
a
,
G4double
b
,
124
G4double
e
,
G4double
&
sum
,
G4int
&
n
) ;
125
void
AdaptGauss
(
G4double
(*
f
)(
G4double
),
G4double
a
,
G4double
b
,
126
G4double
e
,
G4double
&
sum
,
G4int
&
n
) ;
127
128
G4double
GammaLogarithm
(
G4double
xx
) ;
129
130
131
} ;
132
133
#include "G4Integrator.icc"
134
135
#endif
geant4
tree
geant4-10.6-release
source
global
HEPNumerics
include
G4Integrator.hh
Built by
Jin Huang
. updated:
Wed Jun 29 2022 17:25:20
using
1.8.2 with
ECCE GitHub integration