ECCE @ EIC Software
Reference for
ECCE @ EIC
simulation and reconstruction software on GitHub
Home page
Related Pages
Modules
Namespaces
Classes
Files
External Links
File List
File Members
All
Classes
Namespaces
Files
Functions
Variables
Typedefs
Enumerations
Enumerator
Friends
Macros
Groups
Pages
G4BOptnLeadingParticle.hh
Go to the documentation of this file.
Or view
the newest version in sPHENIX GitHub for file G4BOptnLeadingParticle.hh
1
//
2
// ********************************************************************
3
// * License and Disclaimer *
4
// * *
5
// * The Geant4 software is copyright of the Copyright Holders of *
6
// * the Geant4 Collaboration. It is provided under the terms and *
7
// * conditions of the Geant4 Software License, included in the file *
8
// * LICENSE and available at http://cern.ch/geant4/license . These *
9
// * include a list of copyright holders. *
10
// * *
11
// * Neither the authors of this software system, nor their employing *
12
// * institutes,nor the agencies providing financial support for this *
13
// * work make any representation or warranty, express or implied, *
14
// * regarding this software system or assume any liability for its *
15
// * use. Please see the license in the file LICENSE and URL above *
16
// * for the full disclaimer and the limitation of liability. *
17
// * *
18
// * This code implementation is the result of the scientific and *
19
// * technical work of the GEANT4 collaboration. *
20
// * By using, copying, modifying or distributing the software (or *
21
// * any work based on the software) you agree to acknowledge its *
22
// * use in resulting scientific publications, and indicate your *
23
// * acceptance of all terms of the Geant4 Software license. *
24
// ********************************************************************
25
//
26
//
27
//
28
//---------------------------------------------------------------------
29
//
30
// G4BOptnLeadingParticle
31
//
32
// Class Description:
33
// A G4VBiasingOperation that implements the so-called "Leading
34
// particle biasing scheme". It is of interest in the shield problem
35
// to estimate the flux leaking from the shield.
36
// It works as follows:
37
// - it is intented for hadronic inelastic interaction
38
// - at each interaction, are kept:
39
// - the most energetic particle (the leading particle)
40
// - with unmodified weight
41
// - randomly one particle of each species
42
// - with this particle weight = n * primary_weight where
43
// n is the number of particles of this species
44
//---------------------------------------------------------------------
45
// Initial version Nov. 2019 M. Verderi
46
47
48
#ifndef G4BOptnLeadingParticle_hh
49
#define G4BOptnLeadingParticle_hh 1
50
51
#include "
G4VBiasingOperation.hh
"
52
#include "
G4ParticleChange.hh
"
53
54
class
G4BOptnLeadingParticle
:
public
G4VBiasingOperation
{
55
public
:
56
// -- Constructor :
57
G4BOptnLeadingParticle
(
G4String
name
);
58
// -- destructor:
59
virtual
~G4BOptnLeadingParticle
();
60
61
public
:
62
// -- Methods from G4VBiasingOperation interface:
63
// ----------------------------------------------
64
// -- Unused:
65
virtual
const
G4VBiasingInteractionLaw
*
ProvideOccurenceBiasingInteractionLaw
(
const
G4BiasingProcessInterface
*,
G4ForceCondition
& ) {
return
nullptr
;}
66
// -- Used:
67
virtual
G4VParticleChange
*
ApplyFinalStateBiasing
(
const
G4BiasingProcessInterface
*,
// -- Method used for this biasing. The related biasing operator
68
const
G4Track
*,
// -- returns this biasing operation at the post step do it level
69
const
G4Step
*,
// -- when the wrapped process has won the interaction length race.
70
G4bool
& );
// -- The wrapped process final state is then trimmed.
71
// -- Unused:
72
virtual
G4double
DistanceToApplyOperation
(
const
G4Track
*,
73
G4double
,
74
G4ForceCondition
*) {
return
0;}
75
virtual
G4VParticleChange
*
GenerateBiasingFinalState
(
const
G4Track
*,
76
const
G4Step
* ) {
return
nullptr
;}
77
78
public
:
79
// -- The possibility is given to further apply a Russian roulette on tracks that are accompagnying the leading particle
80
// -- after the classical leading particle biasing algorithm has been applied.
81
// -- This is of interest when applying the technique to e+ -> gamma gamma for example. Given one gamma is leading,
82
// -- the second one is alone in its category, hence selected. With the Russian roulette it is then possible to keep
83
// -- this one randomly. This is also of interest for pi0 decays, or for brem. e- -> e- gamma where the e- or gamma
84
// -- are alone in their category.
85
void
SetFurtherKillingProbability
(
G4double
p
) {
fRussianRouletteKillingProbability
=
p
; }
// -- if p <= 0.0 the killing is ignored.
86
G4double
GetFurtherKillingProbability
()
const
{
return
fRussianRouletteKillingProbability
; }
87
88
private
:
89
// -- Particle change used to return the trimmed final state:
90
G4ParticleChange
fParticleChange
;
91
G4double
fRussianRouletteKillingProbability
;
92
93
94
};
95
96
#endif
geant4
tree
geant4-10.6-release
source
processes
biasing
generic
include
G4BOptnLeadingParticle.hh
Built by
Jin Huang
. updated:
Wed Jun 29 2022 17:25:27
using
1.8.2 with
ECCE GitHub integration