ECCE @ EIC Software
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
G4MuElecElasticModel.cc
Go to the documentation of this file. Or view the newest version in sPHENIX GitHub for file G4MuElecElasticModel.cc
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 //
27 // G4MuElecElasticModel.cc, 2011/08/29 A.Valentin, M. Raine
28 //
29 // Based on the following publications
30 // - Geant4 physics processes for microdosimetry simulation:
31 // very low energy electromagnetic models for electrons in Si,
32 // NIM B, vol. 288, pp. 66 - 73, 2012.
33 //
34 //
35 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
36 
37 
38 #include "G4MuElecElasticModel.hh"
39 #include "G4PhysicalConstants.hh"
40 #include "G4SystemOfUnits.hh"
41 #include "G4Exp.hh"
42 
43 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
44 
45 using namespace std;
46 
47 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
48 
50  const G4String& nam)
51 :G4VEmModel(nam),isInitialised(false)
52 {
53 
54  G4cout << G4endl;
55  G4cout << "*******************************************************************************" << G4endl;
56  G4cout << "*******************************************************************************" << G4endl;
57  G4cout << " The name of the class G4MuElecElasticModel is changed to G4MicroElecElasticModel. " << G4endl;
58  G4cout << " The obsolete class will be REMOVED with the next release of Geant4. " << G4endl;
59  G4cout << "*******************************************************************************" << G4endl;
60  G4cout << "*******************************************************************************" << G4endl;
61  G4cout << G4endl;
62 
64 
65  killBelowEnergy = 16.7 * eV; // Minimum e- energy for energy loss by excitation
66  lowEnergyLimit = 0 * eV;
67  lowEnergyLimitOfModel = 5 * eV; // The model lower energy is 5 eV
68  highEnergyLimit = 100. * MeV;
71 
72  verboseLevel= 0;
73  // Verbosity scale:
74  // 0 = nothing
75  // 1 = warning for energy non-conservation
76  // 2 = details of energy budget
77  // 3 = calculation of cross sections, file openings, sampling of atoms
78  // 4 = entering in methods
79 
80  if( verboseLevel>0 )
81  {
82  G4cout << "MuElec Elastic model is constructed " << G4endl
83  << "Energy range: "
84  << lowEnergyLimit / eV << " eV - "
85  << highEnergyLimit / keV << " keV"
86  << G4endl;
87  }
89 }
90 
91 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
92 
94 {
95  // For total cross section
96 
97  std::map< G4String,G4MuElecCrossSectionDataSet*,std::less<G4String> >::iterator pos;
98  for (pos = tableData.begin(); pos != tableData.end(); ++pos)
99  {
100  G4MuElecCrossSectionDataSet* table = pos->second;
101  delete table;
102  }
103 
104  // For final state
105 
106  eVecm.clear();
107 
108 }
109 
110 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
111 
113  const G4DataVector& /*cuts*/)
114 {
115 
116  if (verboseLevel > 3)
117  G4cout << "Calling G4MuElecElasticModel::Initialise()" << G4endl;
118 
119  // Energy limits
120 
122  {
123  G4cout << "G4MuElecElasticModel: low energy limit increased from " <<
124  LowEnergyLimit()/eV << " eV to " << lowEnergyLimit/eV << " eV" << G4endl;
126  }
127 
129  {
130  G4cout << "G4MuElecElasticModel: high energy limit decreased from " <<
131  HighEnergyLimit()/MeV << " MeV to " << highEnergyLimit/MeV << " MeV" << G4endl;
133  }
134 
135  // Reading of data files
136 
137  G4double scaleFactor = 1e-18 * cm * cm;
138 
139  G4String fileElectron("microelec/sigma_elastic_e_Si");
140 
143 
144  // For total cross section
145 
146  electron = electronDef->GetParticleName();
147 
148  tableFile[electron] = fileElectron;
149 
151  tableE->LoadData(fileElectron);
152  tableData[electron] = tableE;
153 
154  // For final state
155 
156  char *path = std::getenv("G4LEDATA");
157 
158  if (!path)
159  {
160  G4Exception("G4MuElecElasticModel::Initialise","em0006",FatalException,"G4LEDATA environment variable not set.");
161  return;
162  }
163 
164  std::ostringstream eFullFileName;
165  eFullFileName << path << "/microelec/sigmadiff_elastic_e_Si.dat";
166  std::ifstream eDiffCrossSection(eFullFileName.str().c_str());
167 
168  if (!eDiffCrossSection)
169  G4Exception("G4MuElecElasticModel::Initialise","em0003",FatalException,"Missing data file: /microelec/sigmadiff_elastic_e_Si.dat");
170 
171  eTdummyVec.push_back(0.);
172 
173  while(!eDiffCrossSection.eof())
174  {
175  double tDummy;
176  double eDummy;
177  eDiffCrossSection>>tDummy>>eDummy;
178 
179  // SI : mandatory eVecm initialization
180  if (tDummy != eTdummyVec.back())
181  {
182  eTdummyVec.push_back(tDummy);
183  eVecm[tDummy].push_back(0.);
184  }
185 
186  eDiffCrossSection>>eDiffCrossSectionData[tDummy][eDummy];
187 
188  // SI : only if not end of file reached !
189  if (!eDiffCrossSection.eof()) eDiffCrossSectionData[tDummy][eDummy]*=scaleFactor;
190 
191  if (eDummy != eVecm[tDummy].back()) eVecm[tDummy].push_back(eDummy);
192 
193  }
194 
195  // End final state
196 
197  if (verboseLevel > 2)
198  G4cout << "Loaded cross section files for MuElec Elastic model" << G4endl;
199 
200  if( verboseLevel>0 )
201  {
202  G4cout << "MuElec Elastic model is initialized " << G4endl
203  << "Energy range: "
204  << LowEnergyLimit() / eV << " eV - "
205  << HighEnergyLimit() / keV << " keV"
206  << G4endl;
207  }
208 
209  if (isInitialised) { return; }
211  isInitialised = true;
212 
213  // InitialiseElementSelectors(particle,cuts);
214 }
215 
216 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
217 
219  const G4ParticleDefinition* p,
220  G4double ekin,
221  G4double,
222  G4double)
223 {
224  if (verboseLevel > 3)
225  G4cout << "Calling CrossSectionPerVolume() of G4MuElecElasticModel" << G4endl;
226 
227  // Calculate total cross section for model
228 
229  G4double sigma=0;
230 
231  G4double density = material->GetTotNbOfAtomsPerVolume();
232 
233  if (material == nistSi || material->GetBaseMaterial() == nistSi)
234  {
235  const G4String& particleName = p->GetParticleName();
236 
237  if (ekin < highEnergyLimit)
238  {
239  //SI : XS must not be zero otherwise sampling of secondaries method ignored
240  if (ekin < lowEnergyLimitOfModel) ekin = lowEnergyLimitOfModel;
241  //
242 
243  std::map< G4String,G4MuElecCrossSectionDataSet*,std::less<G4String> >::iterator pos;
244  pos = tableData.find(particleName);
245 
246  if (pos != tableData.end())
247  {
248  G4MuElecCrossSectionDataSet* table = pos->second;
249  if (table != 0)
250  {
251  sigma = table->FindValue(ekin);
252  }
253  }
254  else
255  {
256  G4Exception("G4MuElecElasticModel::ComputeCrossSectionPerVolume","em0002",FatalException,"Model not applicable to particle type.");
257  }
258  }
259 
260  if (verboseLevel > 3)
261  {
262  G4cout << "---> Kinetic energy(eV)=" << ekin/eV << G4endl;
263  G4cout << " - Cross section per Si atom (cm^2)=" << sigma/cm/cm << G4endl;
264  G4cout << " - Cross section per Si atom (cm^-1)=" << sigma*density/(1./cm) << G4endl;
265  }
266 
267  }
268 
269  return sigma*density;
270 }
271 
272 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
273 
274 void G4MuElecElasticModel::SampleSecondaries(std::vector<G4DynamicParticle*>* /*fvect*/,
275  const G4MaterialCutsCouple* /*couple*/,
276  const G4DynamicParticle* aDynamicElectron,
277  G4double,
278  G4double)
279 {
280 
281  if (verboseLevel > 3)
282  G4cout << "Calling SampleSecondaries() of G4MuElecElasticModel" << G4endl;
283 
284  G4double electronEnergy0 = aDynamicElectron->GetKineticEnergy();
285 
286  if (electronEnergy0 < killBelowEnergy)
287  {
290  return ;
291  }
292 
293  if (electronEnergy0>= killBelowEnergy && electronEnergy0 < highEnergyLimit)
294  {
295  G4double cosTheta = RandomizeCosTheta(electronEnergy0);
296 
297  G4double phi = 2. * pi * G4UniformRand();
298 
299  G4ThreeVector zVers = aDynamicElectron->GetMomentumDirection();
300  G4ThreeVector xVers = zVers.orthogonal();
301  G4ThreeVector yVers = zVers.cross(xVers);
302 
303  G4double xDir = std::sqrt(1. - cosTheta*cosTheta);
304  G4double yDir = xDir;
305  xDir *= std::cos(phi);
306  yDir *= std::sin(phi);
307 
308  G4ThreeVector zPrimeVers((xDir*xVers + yDir*yVers + cosTheta*zVers));
309 
311 
313  }
314 
315 }
316 
317 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
318 
320  (G4ParticleDefinition * particleDefinition, G4double k, G4double integrDiff)
321 {
322 
323  G4double theta = 0.;
324  G4double valueT1 = 0;
325  G4double valueT2 = 0;
326  G4double valueE21 = 0;
327  G4double valueE22 = 0;
328  G4double valueE12 = 0;
329  G4double valueE11 = 0;
330  G4double xs11 = 0;
331  G4double xs12 = 0;
332  G4double xs21 = 0;
333  G4double xs22 = 0;
334 
335 
336  if (particleDefinition == G4Electron::ElectronDefinition())
337  {
338  std::vector<double>::iterator t2 = std::upper_bound(eTdummyVec.begin(),eTdummyVec.end(), k);
339  std::vector<double>::iterator t1 = t2-1;
340 
341  std::vector<double>::iterator e12 = std::upper_bound(eVecm[(*t1)].begin(),eVecm[(*t1)].end(), integrDiff);
342  std::vector<double>::iterator e11 = e12-1;
343 
344  std::vector<double>::iterator e22 = std::upper_bound(eVecm[(*t2)].begin(),eVecm[(*t2)].end(), integrDiff);
345  std::vector<double>::iterator e21 = e22-1;
346 
347  valueT1 =*t1;
348  valueT2 =*t2;
349  valueE21 =*e21;
350  valueE22 =*e22;
351  valueE12 =*e12;
352  valueE11 =*e11;
353 
354  xs11 = eDiffCrossSectionData[valueT1][valueE11];
355  xs12 = eDiffCrossSectionData[valueT1][valueE12];
356  xs21 = eDiffCrossSectionData[valueT2][valueE21];
357  xs22 = eDiffCrossSectionData[valueT2][valueE22];
358 
359 }
360 
361  if (xs11==0 || xs12==0 ||xs21==0 ||xs22==0) return (0.);
362 
363  theta = QuadInterpolator( valueE11, valueE12,
364  valueE21, valueE22,
365  xs11, xs12,
366  xs21, xs22,
367  valueT1, valueT2,
368  k, integrDiff );
369 
370  return theta;
371 }
372 
373 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
374 
376  G4double e2,
377  G4double e,
378  G4double xs1,
379  G4double xs2)
380 {
381  G4double d1 = std::log(xs1);
382  G4double d2 = std::log(xs2);
383  G4double value = G4Exp(d1 + (d2 - d1)*(e - e1)/ (e2 - e1));
384  return value;
385 }
386 
387 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
388 
390  G4double e2,
391  G4double e,
392  G4double xs1,
393  G4double xs2)
394 {
395  G4double a = (std::log10(xs2)-std::log10(xs1)) / (std::log10(e2)-std::log10(e1));
396  G4double b = std::log10(xs2) - a*std::log10(e2);
397  G4double sigma = a*std::log10(e) + b;
398  G4double value = (std::pow(10.,sigma));
399  return value;
400 }
401 
402 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
403 
405  G4double e21, G4double e22,
406  G4double xs11, G4double xs12,
407  G4double xs21, G4double xs22,
409  G4double t, G4double e)
410 {
411 // Lin-Log
412  G4double interpolatedvalue1 = LinLogInterpolate(e11, e12, e, xs11, xs12);
413  G4double interpolatedvalue2 = LinLogInterpolate(e21, e22, e, xs21, xs22);
414  G4double value = LinLogInterpolate(t1, t2, t, interpolatedvalue1, interpolatedvalue2);
415  return value;
416 }
417 
418 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
419 
421 {
422  G4double integrdiff=0;
423  G4double uniformRand=G4UniformRand();
424  integrdiff = uniformRand;
425 
426  G4double theta=0.;
427  G4double cosTheta=0.;
428  theta = Theta(G4Electron::ElectronDefinition(),k/eV,integrdiff);
429 
430  cosTheta= std::cos(theta*pi/180);
431 
432  return cosTheta;
433 }