ECCE @ EIC Software
Reference for
ECCE @ EIC
simulation and reconstruction software on GitHub
Home page
Related Pages
Modules
Namespaces
Classes
Files
External Links
File List
File Members
All
Classes
Namespaces
Files
Functions
Variables
Typedefs
Enumerations
Enumerator
Friends
Macros
Groups
Pages
G4JTPolynomialSolver.hh
Go to the documentation of this file.
Or view
the newest version in sPHENIX GitHub for file G4JTPolynomialSolver.hh
1
//
2
// ********************************************************************
3
// * License and Disclaimer *
4
// * *
5
// * The Geant4 software is copyright of the Copyright Holders of *
6
// * the Geant4 Collaboration. It is provided under the terms and *
7
// * conditions of the Geant4 Software License, included in the file *
8
// * LICENSE and available at http://cern.ch/geant4/license . These *
9
// * include a list of copyright holders. *
10
// * *
11
// * Neither the authors of this software system, nor their employing *
12
// * institutes,nor the agencies providing financial support for this *
13
// * work make any representation or warranty, express or implied, *
14
// * regarding this software system or assume any liability for its *
15
// * use. Please see the license in the file LICENSE and URL above *
16
// * for the full disclaimer and the limitation of liability. *
17
// * *
18
// * This code implementation is the result of the scientific and *
19
// * technical work of the GEANT4 collaboration. *
20
// * By using, copying, modifying or distributing the software (or *
21
// * any work based on the software) you agree to acknowledge its *
22
// * use in resulting scientific publications, and indicate your *
23
// * acceptance of all terms of the Geant4 Software license. *
24
// ********************************************************************
25
//
26
//
27
//
28
// Class description:
29
//
30
// G4JTPolynomialSolver implements the Jenkins-Traub algorithm
31
// for real polynomial root finding.
32
// The solver returns -1, if the leading coefficient is zero,
33
// the number of roots found, otherwise.
34
//
35
// ----------------------------- INPUT --------------------------------
36
//
37
// op - double precision vector of coefficients in order of
38
// decreasing powers
39
// degree - integer degree of polynomial
40
//
41
// ----------------------------- OUTPUT -------------------------------
42
//
43
// zeror,zeroi - double precision vectors of the
44
// real and imaginary parts of the zeros
45
//
46
// ---------------------------- EXAMPLE -------------------------------
47
//
48
// G4JTPolynomialSolver trapEq ;
49
// G4double coef[8] ;
50
// G4double zr[7] , zi[7] ;
51
// G4int num = trapEq.FindRoots(coef,7,zr,zi);
52
53
// ---------------------------- HISTORY -------------------------------
54
//
55
// Translated from original TOMS493 Fortran77 routine (ANSI C, by C.Bond).
56
// Translated to C++ and adapted to use STL vectors,
57
// by Oliver Link (Oliver.Link@cern.ch)
58
//
59
// --------------------------------------------------------------------
60
61
#ifndef G4JTPOLYNOMIALSOLVER_HH
62
#define G4JTPOLYNOMIALSOLVER_HH
63
64
#include <cmath>
65
#include <vector>
66
67
#include "
globals.hh
"
68
69
class
G4JTPolynomialSolver
70
{
71
72
public
:
73
74
G4JTPolynomialSolver
();
75
~G4JTPolynomialSolver
();
76
77
G4int
FindRoots
(
G4double
*op,
G4int
degree
,
78
G4double
*zeror,
G4double
*zeroi);
79
80
private
:
81
82
std::vector<G4double>
p
;
83
std::vector<G4double>
qp
;
84
std::vector<G4double>
k
;
85
std::vector<G4double>
qk
;
86
std::vector<G4double>
svk
;
87
88
G4double
sr
;
89
G4double
si
;
90
G4double
u
,
v
;
91
G4double
a
,
b
,
c
,
d
;
92
G4double
a1
,
a3
,
a7
;
93
G4double
e
,
f
,
g
,
h
;
94
G4double
szr
,
szi
;
95
G4double
lzr
,
lzi
;
96
G4int
n
;
97
98
/* The following statements set machine constants */
99
100
static
const
G4double
base
;
101
static
const
G4double
eta
;
102
static
const
G4double
infin
;
103
static
const
G4double
smalno
;
104
static
const
G4double
are
;
105
static
const
G4double
mre
;
106
static
const
G4double
lo
;
107
108
void
Quadratic
(
G4double
a
,
G4double
b1,
G4double
c
,
109
G4double
*
sr
,
G4double
*
si
,
G4double
*lr,
G4double
*li);
110
void
ComputeFixedShiftPolynomial
(
G4int
l2,
G4int
*nz);
111
void
QuadraticPolynomialIteration
(
G4double
*uu,
G4double
*vv,
G4int
*nz);
112
void
RealPolynomialIteration
(
G4double
*
sss
,
G4int
*nz,
G4int
*iflag);
113
void
ComputeScalarFactors
(
G4int
*type);
114
void
ComputeNextPolynomial
(
G4int
*type);
115
void
ComputeNewEstimate
(
G4int
type,
G4double
*uu,
G4double
*vv);
116
void
QuadraticSyntheticDivision
(
G4int
n
,
G4double
*
u
,
G4double
*
v
,
117
std::vector<G4double> &
p
,
118
std::vector<G4double> &q,
119
G4double
*
a
,
G4double
*
b
);
120
};
121
122
#endif
geant4
tree
geant4-10.6-release
source
global
HEPNumerics
include
G4JTPolynomialSolver.hh
Built by
Jin Huang
. updated:
Wed Jun 29 2022 17:25:20
using
1.8.2 with
ECCE GitHub integration