ECCE @ EIC Software
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
G4HelixImplicitEuler.cc
Go to the documentation of this file. Or view the newest version in sPHENIX GitHub for file G4HelixImplicitEuler.cc
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // G4HelixImplicitEuler implementation
27 //
28 // Helix Implicit Euler:
29 // x_1 = x_0 + 1/2 * ( helix(h,t_0,x_0)
30 // + helix(h,t_0+h,x_0+helix(h,t0,x0) ) )
31 // Second order solver.
32 // Take the current derivative and add it to the current position.
33 // Take the output and its derivative. Add the mean of both derivatives
34 // to form the final output
35 //
36 // Author: W.Wander <wwc@mit.edu>, 03/11/1998
37 // -------------------------------------------------------------------------
38 
39 #include "G4HelixImplicitEuler.hh"
40 #include "G4ThreeVector.hh"
41 
43  : G4MagHelicalStepper(EqRhs)
44 {
45 }
46 
48 {
49 }
50 
51 void
53  G4ThreeVector Bfld,
54  G4double h,
55  G4double yOut[])
56 {
57  const G4int nvar = 6 ;
58  G4double yTemp[6], yTemp2[6];
59  G4ThreeVector Bfld_endpoint;
60 
61  // Step forward like in the explicit euler case
62  //
63  AdvanceHelix( yIn, Bfld, h, yTemp);
64 
65  // now obtain the new field value at the new point
66  //
67  MagFieldEvaluate(yTemp, Bfld_endpoint);
68 
69  // and also advance along a helix for this field value
70  //
71  AdvanceHelix( yIn, Bfld_endpoint, h, yTemp2);
72 
73  // we take the average
74  //
75  for( G4int i = 0; i < nvar; ++i )
76  {
77  yOut[i] = 0.5 * ( yTemp[i] + yTemp2[i] );
78  }
79 
80  // NormaliseTangentVector( yOut );
81 }