ECCE @ EIC Software
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
G4PolynomialPDF.hh
Go to the documentation of this file. Or view the newest version in sPHENIX GitHub for file G4PolynomialPDF.hh
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 //
27 // -------------------------------------------------------------------
28 // GEANT4 Class file
29 //
30 //
31 // File name: G4PolynomialPDF
32 //
33 // Author: Jason Detwiler (jasondet@gmail.com)
34 //
35 // Creation date: Aug 2012
36 //
37 // Description: Evaluates, generates random numbers from, and evaluates
38 // the inverse of a polynomial PDF, its CDF, and its first and second
39 // derivative.
40 //
41 // -------------------------------------------------------------------
42 
43 #ifndef G4POLYNOMIALPDF_HH
44 #define G4POLYNOMIALPDF_HH
45 
46 #include "globals.hh"
47 #include <vector>
48 
50 {
51  public:
52  G4PolynomialPDF(size_t n = 0, const double* coeffs = nullptr,
53  G4double x1=0, G4double x2=1);
54 
56  // Setters and Getters for coefficients
57  inline void SetNCoefficients(size_t n) { fCoefficients.resize(n); fChanged = true; }
58  inline size_t GetNCoefficients() const { return fCoefficients.size(); }
59  inline void SetCoefficients(const std::vector<G4double>& v) {
60  fCoefficients = v; fChanged = true; Simplify();
61  }
62  inline G4double GetCoefficient(size_t i) const { return fCoefficients[i]; }
63  void SetCoefficient(size_t i, G4double value, bool doSimplify);
64  void SetCoefficients(size_t n, const G4double* coeffs);
65  void Simplify();
66 
67  // Set the domain over which random numbers are generated and over which
68  // the CDF is evaluated
70 
71  // Normalize PDF to 1 over domain fX1 to fX2. Used internally by
72  // GetRandomX(), but the user may want to call this as well for evaluation
73  // purposes.
74  void Normalize();
75 
76  // Evaluate (d/dx)^ddxPower f(x) (-1 <= ddxPower <= 2)
77  // ddxPower = -1 -> CDF;
78  // ddxPower = 0 -> PDF
79  // ddxPower = 1 -> PDF'
80  // ddxPower = 2 -> PDF''
81  G4double Evaluate(G4double x, G4int ddxPower = 0);
82 
83  // Generate a random number from this PDF
85 
86  // Set the tolerance to within negative minima are checked
87  inline void SetTolerance(G4double tolerance) { fTolerance = tolerance; }
88 
89  // Find a value x between x1 and x2 at which ddxPower[PDF](x) = p.
90  // ddxPower = -1 -> CDF;
91  // ddxPower = 0 -> PDF
92  // ddxPower = 1 -> PDF'
93  // (ddxPower = 2 not implemented)
94  // Solves analytically when possible, and otherwise uses the Newton-Raphson
95  // method to find the zero of ddxPower[PDF](x) - p.
96  // If not found in range, returns the nearest boundary.
97  // Beware that if x1 and x2 are not set carefully there may be multiple
98  // solutions, and care is not taken to select a particular one among them.
99  // Returns x2 on error
100  G4double GetX( G4double p, G4double x1, G4double x2, G4int ddxPower = 0,
101  G4double guess = 1.e99, G4bool bisect = true );
102  inline G4double EvalInverseCDF(G4double p) { return GetX(p, fX1, fX2, -1, fX1 + p*(fX2-fX1)); }
104 
105  void Dump();
106 
107  protected:
108  // Checks for negative values between x1 and x2. Used by GetRandomX()
110 
113  std::vector<G4double> fCoefficients;
117 };
118 
119 #endif