ECCE @ EIC Software
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
accumulated_histogram< float_type > Class Template Reference

An interpolating_function_p which is the cumulative integral of a histogram.Note than binedges should be one element longer than binheights, since the lower & upper edges are specified. Note that this is a malformed spline, since the second derivatives are all zero, so it has less continuity. Also, note that the bin edges can be given in backwards order to generate the reversed accumulation (starting at the high end) More...

#include <geant4/tree/geant4-10.6-release/examples/extended/electromagnetic/TestEm7/include/c2_function.hh>

+ Inheritance diagram for accumulated_histogram< float_type >:
+ Collaboration diagram for accumulated_histogram< float_type >:

Public Member Functions

 accumulated_histogram (const std::vector< float_type >binedges, const std::vector< float_type > binheights, bool normalize=false, bool inverse_function=false, bool drop_zeros=true)
 Construct the integrated histogram.
 
- Public Member Functions inherited from interpolating_function_p< float_type >
 interpolating_function_p ()
 an empty linear-linear cubic-spline interpolating_function_p
 
 interpolating_function_p (const c2_function_transformation< float_type > &transform)
 an empty cubic-spline interpolating_function_p with a specific transform
 
interpolating_function_p
< float_type > & 
load (const std::vector< float_type > &x, const std::vector< float_type > &f, bool lowerSlopeNatural, float_type lowerSlope, bool upperSlopeNatural, float_type upperSlope, bool splined=true)
 do the dirty work of constructing the spline from a function.
 
interpolating_function_p
< float_type > & 
load_pairs (std::vector< std::pair< float_type, float_type > > &data, bool lowerSlopeNatural, float_type lowerSlope, bool upperSlopeNatural, float_type upperSlope, bool splined=true)
 do the dirty work of constructing the spline from a function.
 
interpolating_function_p
< float_type > & 
sample_function (const c2_function< float_type > &func, float_type amin, float_type amax, float_type abs_tol, float_type rel_tol, bool lowerSlopeNatural, float_type lowerSlope, bool upperSlopeNatural, float_type upperSlope)
 do the dirty work of constructing the spline from a function.
 
interpolating_function_p
< float_type > & 
load_random_generator_function (const std::vector< float_type > &bincenters, const c2_function< float_type > &binheights)
 initialize from a grid of points and a c2_function (un-normalized) to an interpolator which, when evaluated with a uniform random variate on [0,1] returns random numbers distributed as the input function.
 
interpolating_function_p
< float_type > & 
load_random_generator_bins (const std::vector< float_type > &bins, const std::vector< float_type > &binheights, bool splined=true)
 
virtual float_type value_with_derivatives (float_type x, float_type *yprime, float_type *yprime2) const
 get the value and derivatives.
 
virtual ~interpolating_function_p ()
 destructor
 
virtual
interpolating_function_p
< float_type > & 
clone () const
 
void get_data (std::vector< float_type > &xvals, std::vector< float_type > &yvals) const
 
void get_internal_data (std::vector< float_type > &xvals, std::vector< float_type > &yvals, std::vector< float_type > &y2vals) const
 
void set_lower_extrapolation (float_type bound)
 
void set_upper_extrapolation (float_type bound)
 
interpolating_function_p
< float_type > & 
unary_operator (const c2_function< float_type > &source) const
 
interpolating_function_p
< float_type > & 
binary_operator (const c2_function< float_type > &rhs, const c2_binary_function< float_type > *combining_stub) const
 
interpolating_function_p
< float_type > & 
add_pointwise (const c2_function< float_type > &rhs) const
 
interpolating_function_p
< float_type > & 
subtract_pointwise (const c2_function< float_type > &rhs) const
 
interpolating_function_p
< float_type > & 
multiply_pointwise (const c2_function< float_type > &rhs) const
 
interpolating_function_p
< float_type > & 
divide_pointwise (const c2_function< float_type > &rhs) const
 
void clone_data (const interpolating_function_p< float_type > &rhs)
 
- Public Member Functions inherited from c2_function< float_type >
const std::string cvs_header_vers () const
 get versioning information for the header file
 
const std::string cvs_file_vers () const
 get versioning information for the source file
 
virtual ~c2_function ()
 destructor
 
float_type operator() (float_type x) const
 evaluate the function in the classic way, ignoring derivatives.
 
float_type operator() (float_type x, float_type *yprime, float_type *yprime2) const
 get the value and derivatives.
 
float_type find_root (float_type lower_bracket, float_type upper_bracket, float_type start, float_type value, int *error=0, float_type *final_yprime=0, float_type *final_yprime2=0) const
 solve f(x)==value very efficiently, with explicit knowledge of derivatives of the function
 
float_type partial_integrals (std::vector< float_type > xgrid, std::vector< float_type > *partials=0, float_type abs_tol=1e-12, float_type rel_tol=1e-12, int derivs=2, bool adapt=true, bool extrapolate=true) const
 
float_type integral (float_type amin, float_type amax, std::vector< float_type > *partials=0, float_type abs_tol=1e-12, float_type rel_tol=1e-12, int derivs=2, bool adapt=true, bool extrapolate=true) const
 a fully-automated integrator which uses the information provided by the get_sampling_grid() function to figure out what to do.
 
c2_piecewise_function_p
< float_type > * 
adaptively_sample (float_type amin, float_type amax, float_type abs_tol=1e-12, float_type rel_tol=1e-12, int derivs=2, std::vector< float_type > *xvals=0, std::vector< float_type > *yvals=0) const
 create a c2_piecewise_function_p from c2_connector_function_p segments which is a representation of the parent function to the specified accuracy, but maybe much cheaper to evaluate
 
float_type xmin () const
 
float_type xmax () const
 
void set_domain (float_type amin, float_type amax)
 
size_t get_evaluations () const
 
void reset_evaluations () const
 reset the counter
 
void increment_evaluations () const
 count evaluations
 
bool check_monotonicity (const std::vector< float_type > &data, const char message[]) const
 check that a vector is monotonic, throw an exception if not, and return a flag if it is reversed
 
virtual void set_sampling_grid (const std::vector< float_type > &grid)
 establish a grid of 'interesting' points on the function.
 
std::vector< float_type > * get_sampling_grid_pointer () const
 get the sampling grid, which may be a null pointer
 
virtual void get_sampling_grid (float_type amin, float_type amax, std::vector< float_type > &grid) const
 
void preen_sampling_grid (std::vector< float_type > *result) const
 The grid is modified in place.
 
void refine_sampling_grid (std::vector< float_type > &grid, size_t refinement) const
 
c2_function< float_type > & normalized_function (float_type amin, float_type amax, float_type norm=1.0) const
 create a new c2_function from this one which is normalized on the interval
 
c2_function< float_type > & square_normalized_function (float_type amin, float_type amax, float_type norm=1.0) const
 
c2_function< float_type > & square_normalized_function (float_type amin, float_type amax, const c2_function< float_type > &weight, float_type norm=1.0) const
 create a new c2_function from this one which is square-normalized with the provided weight on the interval
 
c2_sum_p< float_type > & operator+ (const c2_function< float_type > &rhs) const
 factory function to create a c2_sum_p from a regular algebraic expression.
 
c2_diff_p< float_type > & operator- (const c2_function< float_type > &rhs) const
 factory function to create a c2_diff_p from a regular algebraic expression.
 
c2_product_p< float_type > & operator* (const c2_function< float_type > &rhs) const
 factory function to create a c2_product_p from a regular algebraic expression.
 
c2_ratio_p< float_type > & operator/ (const c2_function< float_type > &rhs) const
 
c2_composed_function_p
< float_type > & 
operator() (const c2_function< float_type > &inner) const
 compose this function outside another.
 
float_type get_trouble_point () const
 Find out where a calculation ran into trouble, if it got a nan. If the most recent computation did not return a nan, this is undefined.
 
void claim_ownership () const
 increment our reference count. Destruction is only legal if the count is zero.
 
size_t release_ownership_for_return () const
 decrement our reference count. Do not destroy at zero.
 
void release_ownership () const
 
size_t count_owners () const
 get the reference count, mostly for debugging
 
void fill_fblock (c2_fblock< float_type > &fb) const
 fill in a c2_fblock<float_type>... a shortcut for the integrator & sampler
 

Additional Inherited Members

- Public Attributes inherited from interpolating_function_p< float_type >
const
c2_function_transformation
< float_type > & 
fTransform
 
- Protected Member Functions inherited from interpolating_function_p< float_type >
void spline (bool lowerSlopeNatural, float_type lowerSlope, bool upperSlopeNatural, float_type upperSlope)
 create the spline coefficients
 
- Static Protected Member Functions inherited from interpolating_function_p< float_type >
static bool comp_pair (std::pair< float_type, float_type > const &i, std::pair< float_type, float_type > const &j)
 
- Protected Attributes inherited from interpolating_function_p< float_type >
std::vector< float_type > Xraw
 
std::vector< float_type > X
 
std::vector< float_type > F
 
std::vector< float_type > y2
 
c2_const_ptr< float_type > sampler_function
 
bool xInverted
 
size_t lastKLow
 

Detailed Description

template<typename float_type = double>
class accumulated_histogram< float_type >

An interpolating_function_p which is the cumulative integral of a histogram.

Note than binedges should be one element longer than binheights, since the lower & upper edges are specified. Note that this is a malformed spline, since the second derivatives are all zero, so it has less continuity. Also, note that the bin edges can be given in backwards order to generate the reversed accumulation (starting at the high end)

Definition at line 2172 of file c2_function.hh.

View newest version in sPHENIX GitHub at line 2172 of file c2_function.hh

Constructor & Destructor Documentation

template<typename float_type = double>
accumulated_histogram< float_type >::accumulated_histogram ( const std::vector< float_type >  binedges,
const std::vector< float_type >  binheights,
bool  normalize = false,
bool  inverse_function = false,
bool  drop_zeros = true 
)

Construct the integrated histogram.

Parameters
binedgesthe edges of the bins in binheights. It should have one more element than binheights
binheightsthe number of counts in each bin.
normalizeif true, normalize integral to 1
inverse_functionif true, drop zero channels, and return inverse function for random generation
drop_zeroseliminate null bins before integrating, so integral is strictly monotonic.

The documentation for this class was generated from the following file: